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Abstract—To enable safe and efficient Unmanned Aircraft 

Systems (UAS) operations at low altitudes, it is necessary to 

conduct airspace management and operations for UAS traffic. 

This study focuses on deterministic clustering-based drone 

routing, with specific emphasis on the trade-off between 

horizontal and vertical travel costs. The routing problem is 

simplified to a 2D problem that we solve at several altitude 

candidates. Altitude candidates were generated based on clustered 

static obstacles in low urban airspace. Fast-Marching algorithm is 

performed to generate the shortest path at each altitude candidate. 

The optimal altitude is determined by weighing the vertical cost 

for ascent and descent over the horizontal cruising cost at certain 

altitude. Experiments are conducted to choose proper number of 

clusters and weight given to building height in the clustering 

procedure, and different shortest path algorithms are compared. 

Larger scale of Unmanned Aerial Vehicles (UAV) missions are 

simulated, based on which we analyze the relationship between 

optimal travel altitude and shortest cruise path, and estimate the 

UAV cost function.  

Keywords-UAV path planning; UAV cost function; Fast-

Marching; A star (JPS); 

I.  INTRODUCTION 

UAV have received increasing attention over the last decade, 

because of their immense potential to benefit commercial and 

industrial activities [1]. With large potential demand, it 

becomes necessary to manage UAV traffic in urban airspace. 

Organizations including National Aeronautics and Space 

Administration (NASA) [2] and Netherlands Aerospace Centre 

(NLR) [3], have undertaken the task of developing traffic 

management methods for UAV operations. There are also 

emerging UAS Traffic Management projects from Europe, 

Singapore and Korea. 

The aim of UAV path planning is to identify efficient, safe 
flight trajectories in a timely manner, so that UAV can 
accomplish their missions and avoid threats. Performance of 

multiple UAV path planning algorithms were compared in 
various environments. These include Dijkstra’s algorithm, 
Bellman Ford’s algorithm, Floyd-Warshall’s algorithm and the 
A Star algorithm in [4], and A star is found to perform better 
than others. A Star (JPS) is an improved path planning 
algorithm based on A Star [5,6,7]. Reference [8] finds that A 
Star (JPS) has better performance than Rectangular Symmetry 
Reduction (RSR). Fast-Marching methods have been found to 
yield consistent, accurate and highly efficient algorithms in 
optimal path planning around obstacles [9]. Reference [10] uses 
Fast-Marching algorithms to navigate a small quadrotor on an 
optimal collision avoidance path with a helicopter. Reference 
[11] presents both an offline optimal path planning algorithm 
based on A Star without considering the computation cost, and 
real-time suboptimal path planning algorithm based on genetic 
algorithm and potential fields technology. A spline-based path 
planning scheme that generates feasible flight routes for an 
UAV is developed in [12], which allows quick computation 
using a decomposition strategy.  

An understanding of the path-related costs of UAV 
operation is needed for path planning. Horizontal and vertical 
cost ratio was used in [13] for drone routing. Horizontal path 
length cost and height cost were specified in [14] to perform 3D 
UAV trajectory planning. Reference [15] used required number 
of turns to measure cost function. Dublin path length was used 
in [16] as travel cost.  

The primary purpose of this paper is to investigate the 
combined cost of horizontal and vertical distance when routing 
drones in low-altitude airspace in the presence of tall buildings. 
Using San Francisco as a case study, we investigate the trade-
offs between routing a single drone at lower altitude with the 
resulting need to avoid many obstacles and using a higher 
altitude, which allows more direct horizontal paths but entails 
more vertical flight. The “sweet spot” in this trade-off depends 
on the relative cost of horizontal and vertical flight, and we 
study this relationship parametrically. 
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As part of this investigation, we consider different 
approaches to represent tall building obstacles for purposes of 
path planning, and also compare the performance of Fast-
Marching and A Star routing algorithms. We assume that 
airspace structures will incorporate “no fly zones” that keep 
UAVs from tall buildings, but that to avoid undue complexity, 
these zones will be defined based on a relatively small number 
of building groups rather than a multiplicity of zones, each 
corresponding to an individual building. We therefore propose 
a methodology for identifying these building groups based on 
clustering, and consider how the number of clusters and the 
weight attached to building altitude in the clustering algorithm 
affects route efficiency and the computation time. The choice 
of routing algorithm is also critical in our analysis. In this 
regard, we show that Fast-Marching dominates A Star, even 
when a faster variant of the latter is used. 

The contribution of this paper is that we apply obstacle 
clustering to efficiently reduce the obstacle complexity for 
routing. We applied Fast-Marching to horizontal drone routing 
and combined with obstacle clustering, which quickly returns 
better routes than many other shortest path algorithms. Finally, 
this paper proposes a UAV path cost function that predicts the 
cost of the least-cost path as a function of direct-line distance 
and the relative cost of horizontal and vertical travel. 

II. DATA 

This paper uses the financial district in San Francisco (SF) 

as study area. Only buildings are considered as static obstacles 

in urban airspace. San Francisco building footprints data from 

DataSF was used. The data contains San Francisco building 

footprint features, including roof boundary and building height. 

The research was performed using the projected coordinate 

system of EPSG 32610, WGS 84 / UTM zone 10N. 

III. ASSUMPTIONS 

The deterministic clustering-based single drone routing 

focuses on the trade-off between horizonal and vertical costs. 

For the purposes of our analysis make several simplifying 

assumptions. Since wind or any other features that cause 

uncertainties are not considered in this stage, cost is insensitive 

to where along its path the drone ascends and descends. We 

assume the drone flies at a single altitude, after vertically 

ascending at the origin and prior to descending at the 

destination, and correspondingly that the cost of the route 

depends on the vertical distance and the horizontal distance of 

the route. Cost of turning is not considered in this research. 

Though we didn’t explicitly consider random deviations 

between the actual path of the drone and its nominal path, in 

order to ensure safety, a keep-out geofence, the safety distance 

that drones are required to keep away from buildings, is 

considered when we generate aggregated obstacles by 

clustering. We simply add the keep-out geofence distance by 

expanding the actual building boundary outward a certain 

distance. All the following research is using 10-meter keep-out 

geofence distance. In addition, we don’t consider any 

geographical ground level in the current stage. Above Ground 

Level (AGL) or Median Sea Level (MSL) can be added by 

performing this research in corresponding projected coordinate 

system.  

IV. METHODOLOGY 

The routing approach can be simplified from 3D path 

planning to 2D by routing at several attitudes with assumptions 

above. The optimal travel altitude will be determined by 

weighing the horizontal travel cost over vertical cost for ascent 

and descent. A set of altitude candidates is needed to compare 

the vertical and horizontal cost since exhaustive search over all 

altitudes is computational expensive. Obstacle complexity will 

influence the computation time of shortest path algorithm. In 

order to generate the most appropriate altitude candidates and 

reduce complexity of the obstacle field, employ a clustering 

approach to summarize the height and location of the numerous 

static obstacles. Based on the generated altitude candidates set, 

horizontal shortest paths that avoid obstacles will then be 

generated for each altitude candidate. We compare the vertical 

and horizontal costs to decide the optimal travel altitude and 2D 

cruise path at optimal altitude. 

A. Static Obstacles Clustering for Altitude Candidates 

A set of altitude candidates was generated by clustering 

obstacles. The K-means clustering algorithm is applied to 

perform clustering over all buildings in SF financial district. 

We first generate the minimum bounding rectangle containing 

the footprint of each building, since the K-means algorithm 

requires the same feature dimensions for every building 

observation. Each building is summarized by nine features: X 

and Y coordinates of four minimum bounding rectangle 

building vertices plus building height. While all variables are in 

units of meters, height is unique because it varies far less than 

the X and Y coordinates. For this reason, building heights are 

rescaled by different factors. We presented the results of 20, 30, 

and 40 clusters, with scale of 10, 20, 30, 40, and 50 times for 

building height in this paper. 

After clustering, the convex hull of all minimum bounding 

rectangle vertices of buildings in the same cluster forms an 

aggregated obstacle whose altitude is the maximum height of 

buildings in the cluster. The path planning method in later 

section is performed with the aggregated obstacles. Two trade-

offs of obstacle clustering, number of clusters and building 

height rescaling factor, are shown in Fig. 1. On the one hand, 

when the number of clusters is small, more airspace will be 
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made unavailable as a result of being included in the polygons 

of aggregated obstacles. On the other hand, when the number 

of clusters increases the complexity of the obstacle field 

increases and it will be more computationally expensive to 

generate shortest paths. With larger rescaling factor, buildings 

with similar height will be more likely to be clustered in the 

same aggregated obstacle, instead of buildings that are located 

closer. Aggregated obstacles are most dispersed but of more 

uniform height in the case with more scaling. We perform 

sensitivity analysis for these two factors in Section V. 

Fig. 2 shows an example of aggregated obstacles at altitude 

146.07m in 20-cluster case. Red dots are the boundary points 

of aggregated obstacles after clustering, and the aggregated 

obstacles area is filled with green. Dots with the same color 

within the boundary, as well as the red boundary points, are the 

minimum bounding rectangles vertices of buildings belong to 

the same cluster. Grey points represent all the other buildings 

lower than the current altitude in SF financial district. 

B. Optimal Horizontal Travel Route 

The height of each aggregated obstacle, which is the 

maximum actual building height within each cluster, forms the 

altitude candidates set. The optimal 2D cruise path is generated 

at each altitude candidate in this subsection. 

The Fast-Marching (FM) algorithm is used to generate the 

shortest cruise path. Compared to the traditional Dijkstra 

algorithm or A star algorithm, FM replaces the graph update by 

a local resolution of gradient descent, instead of only 

considering standard 8 directions of neighbors, which 

significantly reduces the grid bias. The computation complexity 

of FM is 𝑂(𝑁𝑙𝑜𝑔𝑁),  where N is the total number of grid points, 

which is the number of visited points during the computation in 

practice. FM method has less computation complexity 

compared to A star whose complexity depends on heuristic, and 

FM yields a better approximation of the true shortest path. 

In our research, the grid size is set to be 1m and the step size 

is set to be 5m. Fig. 3 shows an example of shortest path results 

for the case with 20 clusters and 50x building height rescaling. 

The dark blue areas in the plots represent all aggregated 

obstacles at given altitude. The red and green dots represent the 

origin and destination. As the altitude increases, some obstacles 

disappear, leaving more available airspace for drone to travel. 

The shortest cruise path decreases accordingly. 

C. Determine Optimal Travel Altitude 

Shortest travel paths at different candidate altitudes are 

generated as described above. To decide the optimal travel 

altitude, we are interested in how the length of the shortest path 

changes at different altitudes. Fig. 4 plots the pattern of shortest 

path length at different altitude candidates of the same OD as 

in Fig. 3 with 20 clusters and 50x rescaling of building height. 

The red dots represent the data at each altitude candidate, and 

 

Figure 1.  Trade-offs of different number of clusters and building height rescaling factors 

 
Figure 2.  Sky view of aggregated obstacles in SF financial district  

(20 clusters) 
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we superimpose step lines. Based on the shortest path length 

profile in this case, we can determine the optimal route altitude 

for a given ratio of vertical cost to horizontal cost. (In this paper 

we represent vertical unit cost as the average of climbing and 

descending unit cost.) This ratio determines the slope of the 

black iso-cost line in Fig. 4. The point where the lowest iso-cost 

line touches the red plot will give the optimal travel altitude. A 

given altitude will be optimal for a range of cost ratios. 

V. EXPERIMENTS 

This section performs sensitivity analysis for the number of 

clusters and the building height rescaling factor, and compares 

different shortest path algorithms. 10 random OD pairs were 

generated for analysis in this section. 

 

Figure 4.  Shortest horizontal path lengths at different altitudes  

               

               

Figure 3.  An example of path planning at different altitudes for the same OD 
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A. OD Sampling 

A random sample of OD’s is generated within the red circle 

containing all obstacles in San Francisco area shown in Fig. 5. 

The center of the red circle is the middle point of maximum and 

minimum X and Y coordinates of all obstacles. The radius is 

1100 meters, which just contains all obstacles in study area. 

Points are randomly sampled within the red circle. We assume 

that only the points not located in the minimum bounding 

rectangle of buildings can be used as O’s and D’s. Red and 

green dots are the sampled origins and destinations. The 

obstacles area (filled with blue) here uses the minimum 

bounding rectangle of buildings without clustering. As 

mentioned in the last section, there exists O’s or D’s located in 

the clustered aggregated obstacle area but not in the actual 

obstacles, because of wasted airspace by clustering. These 

points located in the wasted airspace can be used as O’s and 

D’s, but the shortest path is only feasible at altitude higher than 

both altitudes of aggregated obstacles at origin and destination. 

We only consider OD’s with Euclidean Distance longer than 

1000 meters to reduce the possibility that the travel paths of OD 

samples are obstacle free. 

B. Sensitivity Analysis of the Number of Clusters 

Sensitivity analysis of 20, 30 and 40 clusters, assuming 30x 

height rescaling, for 10 OD’s is performed in this subsection in 

order to determine the proper number of clusters. An example 

of altitude vs. horizontal path length plot is shown in Fig. 6. The 

shortest cruise path length is always shorter with more clusters, 

since less available airspace is wasted. More clusters require 

more computation time (see Table Ⅰ). The largest distance gap 

(refer to Fig. 6) between 20 and 40 clusters cases is calculated 

for all 10 OD samples. The maximum percentage savings of 

shortest cruise path length are calculated as the largest distance 

gap divided by corresponding 20-cluster shortest path length. 

The average maximum path length savings is only about 10% 

using 40 clusters compared to 20 clusters. Therefore, we pick 

20 clusters for later study considering both path length savings 

and computational convenience. 

TABLE I.  COMPUTATION TIME WITH DIFFERENT CLUSTER NUMBERS 

# clusters 20 30 40 

Computation time for 10 OD’s /s 386.2 549.7 950.2 

The influence of different numbers of clusters on path cost 

is also analyzed. We assume constant unit costs for vertical and 

horizontal travel. Given vertical and horizontal cost ratio (V/H), 

the adjusted cost, in horizontal distance units can be calculated 

by the following equations: 

𝐶 = 𝑙(ℎ) + 2𝑉
𝐻⁄ ∙ ℎ                                                            (1) 

𝐶∗(𝑉
𝐻⁄ ) = 𝑙(ℎ∗(𝑉

𝐻⁄ )) + 2𝑉
𝐻⁄ ∙ ℎ∗(𝑉

𝐻⁄ )                  (2) 

Where 𝑙(ℎ) is the shortest horizontal path length at altitude ℎ, 

and ℎ∗(∙) is the optimal altitude that minimizes total cost. We 

use simple enumeration among all the altitude candidates to find 

ℎ∗(∙). Cost ratios of 1, 2, 5, and 10 are used to compare cost 

results since vertical cost is higher than horizontal travel cost in 

most cases [17]. As shown in Fig. 7, total travel cost has lower 

mean with more clusters for all four cost ratios. The optimal 

travel altitude is lower with more clusters, since less airspace is 

wasted and horizontal path is shorter. The cost difference with 

different numbers of clusters increases as the V/H cost ratio 

increases. When V/H cost ratio is small (e.g. V/H=1 in Fig. 7), 

cost is quite insensitive to the number of clusters, since the 

optimal paths are higher and therefore avoid most obstacles. The 

sensitivity to the number of clusters becomes greater when high 
 

Figure 5.  OD Sampling 

 

Figure 6.  Horizontal shortest path lengths at different altitudes with 

30X scaling of building height 
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costs of vertical movement push optimal paths toward lower 

altitudes, where obstacles matter more. 

C. Sensitivity Analysis of Building Height Rescaling Factor 

While all features in clustering are in units of meters, height 

is unique because it varies far less than the X and Y coordinates. 

The height of a cluster is the height of the tallest building in the 

cluster. For this reason, building heights are rescaled by 

different factors. The impact of changing the building height 

rescaling factor from 10 to 50 times is analyzed in this 

subsection. In Fig. 8, the total travel cost is larger with higher 

V/H cost ratio. The cost is not monotonically increasing or 

decreasing as building height rescaling factor changes when 

V/H cost ratio is small (V/H=1 or 2). This can be explained by 

the trade-off of rescaling factor described in Fig. 1. The more 

we scale, the more likely available airspace between buildings 

with similar height is regarded as obstacles. However, if we 

don’t scale enough, more airspace is wasted because of building 

height difference. Drones will be able to travel at lower altitude 

with higher rescaling factor, since a higher rescaling factor 

saves more airspace associated with the height difference of 

buildings, which results in lower cost with higher rescaling 

factor if the cost ratio is large (V/H=5 or 10). 

In order to determine the proper rescaling factor, we plot the 

total volume of obstacles in study airspace under different cases 

in Fig. 9. The total volume of obstacles decreases with more 

clusters, since less available airspace will be counted as 

obstacles. The total volume of obstacles in the airspace 

decreases at first as rescaling factor increases, then stays almost 

stable, after the 30x rescaling factor. Fig. 8 suggests that a 

higher rescaling factor (e.g. 50) yields a lower cost when V/H 

is high, without any significant cost penalty when V/H is small. 

The computation time does not change significantly with 

different building height rescaling factors. 

D. Comparison with A star (JPS) 

The A Star Jump Point Search (JPS) algorithm makes 
pathfinding on a rectangular grid more efficient, especially in 
open spaces. It performs very well on quickly generating a path. 
This algorithm is compared with Fast-Marching method.  

The cumulative frequency diagram of cost difference 
between A star (JPS) and Fast-Marching algorithms with 
different cost ratios is presented in Fig. 10. Cost difference of 
two algorithms is distributed in a larger range with higher cost 
ratio. Given different vertical and horizontal cost ratios, cost 
using A star (JPS) is always larger since Fast-Marching gives a 
near-optimal shortest path and A star (JPS) does not necessarily 
do so. The travel cost difference between two algorithms 
amplifies with larger vertical and horizontal cost ratio. In 
addition, by comparing computation time in Table Ⅲ, we see 

Fast-Marching has better performance. For this reason, we 
subsequently used Fast Marching. 

 

Figure 7.  Sensitivity analysis of different numbers of clusters 

 

Figure 8.  Building height rescaling factors sensitivity analysis 

 
Figure 9.  Total volume of obstacles in different scenarios 

 
Figure 10.  Cumulative frequency diagram of cost difference percentage 

( (A star (JPS) cost - Fast-Marching cost)/ Fast-Marching cost) 
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TABLE II.  COMPUTATION TIME OF DIFFERENT ALGORITHMS 

Shortest path algorithm A star (JPS) Fast-Marching 

Computation time for 10 OD’s /s 585.07 386.2 

VI. LARGER SAMPLE ANALYSIS 

More OD pairs are simulated in this section to analyze the 
relationship between shortest cruise path length and travel 
altitude, and trade-off between horizontal and vertical cost. 200 
OD pairs are generated using the same sampling strategy in 
Section Ⅴ. Results in this section are based on 20 clusters and 
30x rescaling factor case. 

A. Analysis of Path Length and Altitude 

The ratio of shortest cruise path length and horizontal 

Euclidean Distance at different altitudes is presented in Fig. 11. 

The median of shortest path length and Euclidean Distance ratio 

decreases with altitude, since less obstacles must be avoided. 

From altitude 258.49m to 23.26m, the median distance ratio 

increases from 1 to around 1.25, and the 75th percentile 

increases from 1.05 to around 1.35. At the highest altitude of 

20 clusters, 258.49m, more than 75% of the paths are of 

Euclidean Distance, while for the balance the path must be 

adjusted to avoid the single obstacle cluster that has this 

maximum altitude.   

The relationship between additional shortest cruise path 

length compared to Euclidean Distance and Euclidean Distance, 

at altitudes 258.49m, 109.71m, and 23.26m are presented in Fig. 

12. At very high altitude, 258.49m, most of shortest cruise paths 

equal to Euclidean Distance, as drones fly direct Euclidean 

Distance for most OD’s. The shortest cruise path length varies 

much more at the lower bound altitude 23.26m. At the 

intermediate altitude of 109.71m, the shortest cruise path length 

varies more with longer distance between OD, because at 

shorter distances it is more likely that the shortest cruise path is 

obstacle free. 

B. Cost Function Estimation 

Based on the analysis of the relationship between cost and 
other features, we generate the UAV path cost function. This 
function predicts the cost of the least cost path in horizontal 
distance units, taking into account both the vertical and 
horizontal cost. We propose the following cost function 
specification: 

𝐶∗(𝑉
𝐻⁄ ) = 𝐸𝐷 ∙ (𝛼(𝑉

𝐻⁄ )
𝛽

+ 1)                                       (3) 

where ED is the Euclidean Distance between OD, 𝛼 and 𝛽 are 
the coefficients to be estimated. The intuition for this functional 
form is that if V/H=0, the optimal solution is to climb to an 
obstacle-free altitude and fly the Euclidean Distance. However, 
as this ratio increases, the optimal altitude will decrease, 
resulting in more circuitous paths as well as a larger vertical cost 
component.  

Assigning cost ratios from 1 to 20 with increment 0.5, cost 
function is estimated based on 200 OD samples using linear 
regression. As before the minimum cost for a given OD is found 
by simple enumeration of all the altitude candidates. The 
estimated result is: 

𝐶∗(𝑉
𝐻⁄ ) = 𝐸𝐷 ∙ (0.154 ∙ (𝑉

𝐻⁄ )
0.617

+ 1)                         (4) 

The R-square is 0.7, indicating the cost function is a good fit. 
The beta coefficient in the cost function is 0.617 from estimation. 
It is intuitive that this coefficient should be less than 1, since a 
higher cost ratio reduces the optimal altitude. 

Predicted cost and actual cost are compared in Fig. 13. The 
blue scatter points show obvious quasi-linear patterns, which 
correspond to the results for different OD pairs, and the cost 
function captures the overall linear trend very well. Systematic 
differences between the OD pairs are also evident. The different 
curvatures of the OD-specific quasi-linear patterns show that 
least-cost paths for different OD’s have different sensitivities to 
the V/H value; the results in equation (4) thus reflect the average 
of this sensitivity across the 200 OD’s. Further analysis is 
expected to yield a cost model that is more sensitive to 
differences between OD pairs.  

VII. CONCLUSIONS 

This paper finds that a clustering-based method can 
efficiently summarize the trade-off between low altitude routes 
that must avoid many buildings and high-altitude routes that 
involve larger vertical cost. In the case of San Francisco, we 

 

Figure 12. Horizontal shortest path length difference at three altitudes 
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represented 931 buildings with 20-40 clusters. Each of these 
clusters has an altitude defined by the tallest building it contains 
and thus defines a candidate altitude for drone routing. Thus we 
can capture the essential trade-off with a small number of 
altitude candidates. For example, we find that the median ratio 
of horizontal path length to Euclidean Distance decreases from 
1.25 to 1.0 if the drone climbs from about 30 meters to 250 
meters. For a given ratio of vertical to horizontal cost, one of 
these candidates yields the lowest total path cost. The trade-off 
can be succinctly summarized with a cost function that gives the 
lowest total cost (vertical plus horizontal) for a route as a 
function of the Euclidean Distance between the origin and 
destination and the value V/H, which, despite having a very 
simple form, has very good predictive performance.  

Future work should move along several lines. First, the cost 
function should be improved by considering other features of the 
OD pair aside from Euclidean Distance. Second, the analysis 
should be extended to other cities. Third, topography should be 
taken into account by performing the routing in a projected AGL 
coordinate system. Third, path costs should capture additional 
factors as such turning, operator-drone connectivity, population 
density, drone type, payload, and stochastic factors such as wind. 
Finally, once the single-drone problem have been satisfactorily 
solved, we must move on to the multiple drone routing problem, 
which requires de-conflicting drone paths in space and time. 
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