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Abstract 

This study aims to improve operational 
performance of a multiple airport region (MAR) by 
analyzing interdependent capacity scenarios of that 
MAR airports and redistributing airport traffic to 
make more efficient use of the available capacity. We 
propose to shift flights between MAR airports in 
order to reduce flight delays. Both the deterministic 
and stochastic versions of a flight shift model are 
formulated as a mixed-integer linear program 
(MILP). The proposed methodology is applied to 
New York MAR, which includes five airports, using 
data for the year 2015. The deterministic model is 
applied to short-term flight reassignment where the 
MAR capacity scenario is known and flights are re-
assigned on the day of operations, while the 
stochastic model is applied to re-assign flights in the 
original flight schedule based on capacity scenario 
probabilities. Results of both models show that by 
rescheduling flight landing airport and landing time, 
the total flight delay in the New York MAR could be 
significantly reduced, even when a high airport 
reassignment cost is assumed.  

Keywords- Airport Capacity; Flight Diversion; 
Disruption Management; Airport Congestion 
Mitigation; Flight Delay 

Introduction 
Imbalance between airfield capacity and flight 

demand, caused by the growth of air traffic demand 
in a long-term perspective and by airport capacity 
degradation or demand variation in the short term, 
leads to congestion and delay. To address this 
problem, there has been considerable research on 
scheduling improvements at a single airport to reduce 
delay [1,2,3] In this research, we investigate the 
opportunities for reducing delay through adjustments 
in the schedule that involve multiple airports serving 
a given region. Specifically, we propose to shift 
flights from a congested airport to land at another 
airport in the same multiple airport region (MAR) in 
order to utilize the capacity of the MAR airports 

more efficiently. Especially when a flight is 
experiencing large delays or is causing huge delay to 
later flights, shifting flights may ameliorate the 
problem significantly. In this study, therefore, we 
propose scheduling changes across multiple airports 
to reduce delay. In order to analyze the benefit of 
shifting flights, capacity analysis of multiple airports 
is performed. We formulate a mixed integer linear 
program to optimize the total delay and re-
assignment cost of the flight schedule in the MAR 
under different capacity scenarios.   

Literature Review 
When exploring the countermeasures to mitigate 

congestion and delay in the NAS, the solution space 
can be considerably expanded if flight shifts between 
airports serving the same region are allowed. When 
two or more major commercial airports serve 
passengers in the same metropolitan region, we refer 
to it as a MAR [4]. Different airports in the same 
MAR may face different capacity-demand imbalance 
situations. It may therefore possible to take the 
advantage of excess capacities of some of the airports 
to reduce the overall airport delay of the MAR.  

Airport capacities are subject to substantial 
variability as they depend on weather conditions, 
selected runway configurations, and other dynamic 
factors. Capacity scenario analysis identifies the 
patterns of airport capacity variation and has been 
used widely for air traffic management and airport 
planning [5]. Methodologies for generating capacity 
scenario trees for a single airport from empirical data, 
and the performance of models to optimize ground 
delay programs based on scenario trees, are studied in 
[6]. This builds on earlier research [7], in which 
capacity uncertainty has been addressed by 
considering a set of scenarios, each corresponding to 
a time-varying airport capacity profile. All of these 
studies focused on capacity analysis of single airport. 
In this study, we apply clustering analysis to identify 
capacity scenarios of multiple airports in the same 
MAR. These scenarios capture the interdependence 
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of capacity profiles of different airports and lay the 
foundation for the flight shift model that we propose 
to mitigate airport congestion and flight delay, which 
will be elaborated in later sections.    

Flight diversion has been proposed in existing 
research to reduce delay for airport disruption. [8] 
proposes “real-time inter-modalism” involving the 
substitution of flights by surface vehicle trips and, 
when the hub is part of a regional airport system, the 
use of inter-airport ground transport to enable 
diversion of flights to alternate hubs. Zhang and 
Hansen [9] proposes a Regional Ground Delay 
Program (R-GDP) concept into the Collaborative 
Decision Making (CDM) system when a hub airport 
located in a regional airport system encounters a 
severe airside capacity reduction. They suggested that 
if there is excess capacity at other airports in the 
same region, airlines could utilize the excess capacity 
by diverting flights originally scheduled to the hub 
airport to other airports and transport passengers and 
crew members between original scheduled and 
diverted airports by incorporating ground transport 
modes into their disruption management. However, 
they only applied the modeling to a simple case with 
two airports, one primary and one alternative airport 
in the same region. In our study, we propose a 
general mathematical modeling to explore the 
potential of flight shifting across all airports in an 
MAR to alleviate delay. Such model could be a 
powerful decision tool for air traffic controllers and 
managers to alleviate airport congestion and delay 
and would benefit airlines, airports, passengers, as 
well as local communities suffering the negative 
impacts of airport congestion and delay.  

Existing research works on the stochastic flight 
scheduling problem to capture uncertainties and 
variabilities. An integrated approach is developed in 
[10,11] for airport congestion, capacity utilization 
and scheduling interventions to jointly optimize the 
rescheduling of flights through scheduling 
interventions at the strategic level and the utilization 
of airport capacity at the tactical level. [12] proposes 
a model that optimizes scheduling interventions and 
ground-holding operations across airports networks, 
under operating uncertainty. In our work, both flight 
shifting in tactical and strategical levels are 
considered and proposed using deterministic and 
stochastic models, respectively.  

In the United States, a major source delay 
throughout the NAS are New York commercial 
airports. Since approximately a third of the nation's 
air traffic passes through NY airports, delays in NYC 
ripple through the system causing delays at other 
airports [13]. These delays can be attributed to 
shortfalls in daily airport capacity (often due to 
weather) and to airline scheduling practices [14]. 
Therefore, this study takes New York MAR as a case 
study to perform capacity analysis and demonstrate 
the flight shift model.  

In sum, previous research has introduced the 
concepts of MAR and methods for identifying 
MARs. Other studies have introduced the concept of 
capacity scenario for an individual airport, and 
studied the possibilities of reducing capacity demand 
imbalances either by shifting flights from high 
demand to lower demand periods, or from an airport 
with a severe capacity demand imbalance to a 
secondary airport. This research builds on previous 
contributions by considering the possibility of 
reducing delay by shifting flights between several 
different airports in a MAR. Toward this end, we 
identify capacity scenarios that consider all airports 
in an MAR, and solve an optimization model that 
redistributes flights among airports in the MAR in a 
manner that takes into account both the available 
capacity and temporal distances between airports.  

Capacity Scenarios Clustering 
We analyze capacity variation in the New York 

MAR by identifying capacity scenarios for its five 
airports: JFK (John F. Kennedy International 
Airport), EWR (Newark Liberty International 
Airport), HPN (Westchester County Airport), ISP 
(Long Island MacArthur Airport), and LGA 
(LaGuardia Airport). These airports were found to 
belong to the New York MAR following the 
algorithm in [15] with 1.5-hour threshold of temporal 
distance between airports (See Figure 1). A given 
scenario specifies a daily capacity profile for each of 
these airports. Combinations of visibility, winds, 
other factors determine which capacity scenario is 
realized on a given day.  
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Figure 1. New York MAR 

We obtained quarter-hour Airport Arrival Rate 
(AAR) from the FAA ASPM data base. According to 
FAA order JO 7210.3W, AAR is “a dynamic 
parameter specifying the number of arrival aircraft 
that an airport, in conjunction with terminal airspace, 
can accept under specific conditions throughout any 
consecutive sixty (60) minute period.” Thus, in our 
study, AAR is used as the capacity data of New York 
MAR airports for this analysis. Instead of 60 minutes, 
we used quarter-hour as the time unit, hoping to 
capture the airport capacity variation with higher 
resolution. Developed the combined capacity 
scenarios for the New York MAR in the year 2015. 

The capacity of an airport varies from hour to 
hour and day to day, due to the variability of weather, 
fleet mix, availability of airport facilities, operational 
status of air traffic control equipage, etc. In the case 
of the New York MAR, there are also significant 
interactions between airport configurations that also 
affect capacity.  In order to get typical MAR daily 
capacity scenarios, we perform clustering analysis of 
daily capacity profiles of five airports in the New 
York MAR altogether. By analyzing the combined 
capacity scenarios, we take into account the 

interdependence in airport capacities that may result 
from correlated weather, traffic interactions, and 
other factors.  Considering the low traffic during the 
nighttime hours, which may reduce the reliability of 
the called rates, we only analyzed the recorded 
capacity from 7 am to 11 pm in a day. 

We apply K-means clustering analysis to study 
New York MAR capacity profiles. Both elbow 
method and silhouette analysis are performed with 
number of capacity scenarios from 1 to 50 to 
determine the number of clusters. From both analysis, 
we judged that 11 clusters was the point beyond 
which increases in explained variance begin to 
diminish significantly. We thus use 11 clusters in our 
subsequent analysis. 

Table 1 presents the clustering results of the 
three example (out of 11 total) capacity profiles in 
New York MAR of the year 2015. Each capacity 
profile centroid plot on the left side represents a daily 
capacity scenario of New York MAR in 2015, while 
the plots on the right-hand side show the original 
capacity data for the days corresponding to that 
scenario. The centroid capacity profiles on the left 
side are simply the mean of individual values for the 
days included in the cluster. From the top to the 
bottom, the lines (Orange, blue, dark blue, green and 
light blue) represent the capacity trends of JFK, 
EWR, LGA, ISP and HPN airports. The number and 
the percentage on the left bottom of the picture 
represent the number and the percentage of the days 
belonging to the cluster. Plots (a0) and (c0) show a 
scenario in which capacities of all the airports in New 
York MAR are relatively stable through the day but 
with JFK at a higher capacity in (a0) and a lower 
capacity in (c0). Plot (b0) represents the situation that 
the capacity of JFK airport is at the low level in the 
early morning and then increases at noon. 

3
Authorized licensed use limited to: Hong Kong Polytechnic University. Downloaded on August 23,2023 at 03:44:52 UTC from IEEE Xplore.  Restrictions apply. 



 

 

Table 1. Three Capacity Profile Clusters Results 

Cluster Centroid Original Data in The Cluster 

  
(a0) (a1) 

  
(b0) (b1) 

  
(c0) (c1) 
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Flight Shift Model 
Airports in an MAR are relatively close to one 

another, raising the possibility that flights may be 
shifted between MAR airports in order to alleviate 
demand capacity imbalances. Such shifting could 
occur at either a tactical or strategic level. Tactically, 
if on a day of operations (or a part thereof), one MAR 
airport had excess capacity while another had excess 
demand, flight shifting could reduce the queueing 
delay at the airport with excess demand. 
Strategically, if future traffic projections suggest that 
one airport will be consistently congested while 
another has excess capacity, flight schedules might 
be adjusted to shift the demand into the less 
congested facility. Neither of these options can be 
exercised easily, since the costs of such flight shifting 
are substantial. However, it is at least conceivable 
that when there are substantial differences in 
congestion at different airports, such reallocation 
would be appropriate. Therefore, in this section, we 
leverage our MAR and capacity scenario analyses to 
develop a simple mathematical model to reassign 
airports and landing times to flights in order to 
improve flights operations in an MAR. Both 
deterministic and stochastic versions of model are 
presented for short-term and long-term flight 
reassignment respectively. We again use the New 
York MAR as a case study. In applying the model, 
we assume a wide range of flight shift penalties, 
since the value of this penalty is uncertain,  and in 
order to determine the penalty level that would 
preclude flight shifting as a desirable strategy. 

Deterministic Flight Shift Model  
The deterministic model assigns flight shifting 

under certain capacity scenario, which can be applied 
to short-term flight reassignment when capacity 
scenario is known or predictable. We analyze the 
results with 11 capacity scenarios of New York 
MAR. Sensitivity analysis is performed with different 
flight shift fixed costs and demand levels. 

Model Description 
Let the set  denote the set of flights scheduled 

to arrive at any of the set of airports, denoted , in a 
MAR over a day, which we divide into a set of 
discrete time intervals . Our integer decision 
variables, , are defined as the number of flights 
scheduled to land at airport  and shifted to land at 
airport  in an updated time period t. 

Our optimization problem includes the input 
parameters defined in Table 2: 

Table 2. Description of Model Parameters 

Parameter Definition 

 
Number of flights scheduled to 
land at airport  in time period  

 
Arrival capacity of airport  in 
time period  

 

Cost of shifting per flight from 
scheduled airport  to shifted 
airport . The cost includes flight 
shift fixed cost, and time cost of 
passengers from shifted airport 
back to scheduled airport. The cost 
is in time unit 

 
Ground travel time from scheduled 
landing airport  to shifted airport 

 in the same MAR 

 

Penalty, in time units, of shifting 
any flight from its scheduled 
airport to some other airport, not 
including the ground travel time 

We see to minimize the total cost of shifting 
flights to later arrival times and other airports, taking 
into account airport arrival capacity constraints. This 
is formulated as: 

 
  s.t.    

          (1) 
                                    (2) 

                                        (3) 

                                (4) 

The objective function is the total penalty of 
flight delay as well as shifting flights to other airports 
in the MAR.  
represents the delay cost of all the flights and 

 represents the shifting cost. 
Constraint (1) describes the reassigned arrival time at 
shifted airport cannot be earlier than the scheduled 
arrival time; Constraint (2) restricts the number of 
arrival flights landing in each time unit at each airport 
from exceeding the airport capacity for that time 
interval in the updated flight schedule with flight 
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shifting; Constraint (3) maintains the balance of flight 
flow between original and updated flight schedules. 

Numerical Example of New York MAR 
We apply this model to the New York MAR. 

Thus . We solve the 
model for 11 different capacity scenarios of five 
airports in New York MAR. To select a 
representative flight schedule, we sort the number of 
flights in JFK airport of the year 2015 in descending 
order and choose the flight schedule data of the 10th 
daily enplanement day (July 2nd 2015) as inputs for 
our model. For that day, there are 1985 flights 
schedule to land at the New York MAR airports. We 
use the capacity profiles of the 11 clusters as the 
capacity input of New York MAR to our model. 
Thus, we solve the model for 11 different capacity 
inputs. We consider a set of flight shift fixed costs  

ranging from 0.5 to 15 hours, as well as a baseline 
case in which flight shifting is prohibited (i.e. ). 

Table 3 shows, as an example, the results of 
reassigned schedule when flight shift fixed cost is set 
as 12 hours, including the amount of delay, the 
number of shifted flights, and total penalty of 
reassigned schedule by the shift model and original 
schedule based on airport capacity without flight 
shifting. We observe that there is some flight shifting 
in eight of the 11 scenarios, but it exceeds 1% of 
flights in just three scenarios. Scenario 10 has by far 
the greatest amount of flight shifting, with 7.5% of 
flights arriving at a different airport than originally 
scheduled. Shifting in this scenario reduces total cost 
of delay and shifting from 4061 to 3038, about 25%. 
Note that these savings are realized despite a penalty 
in excess of 12 hours for shifting any flight.

 

Table 3. Model Solution 

Cluster 
 

Flight Shift Model With 12-hour Flight Shift Fixed Cost No Shift Model Cost Savings 
(hrs) 

 
Total cost including 
flight shifting (hrs) 

Flight delay cost 
(hrs) 

Fraction of 
shifted flights 

Flight delay 
cost (hrs) 

1 600 339 0.011 666 66 
2 1291 1064 0.009 1330 39 
3 85 85 0.000 85 0 
4 420 346 0.003 428 8 
5 168 131 0.002 171 3 
6 184 184 0.000 184 0 
7 175 163 0.001 176 0.06 
8 123 123 0.000 123 0 
9 97 97 0.000 97 0 
10 3038 1133 0.075 4061 1023 

 

Given the probability, , of each cluster  from 
Table 3, we calculated the average cost savings, , 
which is the estimated cost savings per day from 
flight shifting. This is found to be 32 flight hours per 
day assuming 12-hour flight shift fixed cost. 

 
Table 4 presents four typical airport capacity 

scenarios (on the left) and the details of shifted flights 
under the given capacity profiles (on the right) with 
3-hour and 12-hour flight shift fixed cost. The bar 
heights on the right-side plots indicate the number of 
flights shifted between different airport pairs; their 

colors indicate the times of day of the flight shifts. 
For capacity scenario 1 with a 3-hour penalty, flights 
are shifted mainly from LGA and EWR to JFK and 
HPN, and mainly in the morning and afternoon. With 
the 12-hour penalty, the only shifts are morning 
flights from LGA to JFK. For capacity scenario 2, 
which features a lower capacity at JFK throughout 
the day, there is considerable shifting from JFK to 
other airports in the afternoon under the lower shift 
penalty, but this is largely eliminated with the higher 
penalty. The shifting that remains with the 12-hour 
penalty is mostly from LGA in the morning. For 
capacity scenario 5, small amount of flights will be 
shifted because most airports are in good capacity 
situation. The only shifts are flights from LGA to 
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JFK with either 3-hour or 12-hour penalty. In the 
case of cluster 5 with 3-hour shift fixed cost, there are 
more flights shifted to land at JFK airport in the 
afternoon than in the morning, taking advantages of 
the higher capacity at JFK airport in the afternoon. 
The afternoon shifts disappeared under higher flight 
shifting penalty. Cluster 10 is an extremely bad case 
when JFK, EWR, and LGA all have low capacity 
compared to other case. Thus, a large number of 
flights are shifted from JFK, EWR, and LGA to other 
airports. Flights are mainly shifted from LGA and 
EWR to ISP, JFK, and HPN. Small amount of flights 
will be shifted from JFK to ISP and HPN in the 
afternoon. The total number of shifted flights are 
higher than in the three other capacity scenarios 
above. Less flights will be shifted with higher penalty 
according to the scale of vertical axis.  

There are fewer shifted flights with higher shift 
fixed cost, comparing the two graphs on the right 

(note that these have different vertical scales). Cluster 
1 and cluster 5 are experiencing a relatively good day 
for the MAR because only a few number of flights 
will be shifted, according to the scale of vertical axis 
in the graphs on the right. JFK airport has higher 
capacity in these two capacity scenarios, therefore 
some flights in other airports are shifted to land at 
JFK airport when lack of arrival capacity at their 
originally scheduled arrival airports.   

Commenting more generally about Table 4, we 
observe that many airport pairs are involved in shifts. 
LGA is a major source of shifted flights, and HPN as 
JFK are major sinks for these shifts. Flights are never 
shifted to LGA and EWR under these four scenarios. 
Temporally, morning and afternoon are the primary 
times for shifting; which of these time periods has 
more shifting depends on the capacity scenario and 
the shift cost. There will be fewer shifted flights with 
higher shift fixed cost under each scenario.
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Table 4. MAR Flight Shifting Results 

Capacity Trend Shifted Flights (3-hour shift fixed cost) Shifted Flights (12-hour shift fixed cost) 
Cluster 1 

 

  
Cluster 2 
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Capacity Trend Shifted Flights (3-hour shift fixed cost) Shifted Flights (12-hour shift fixed cost) 
Cluster 5 

 

  
Cluster 10 
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Sensitivity Analysis 
This section investigates how flight shifting 

performs differently with different levels of demand 
and flight shift fixed costs. Taking the 2015 demand 
as the base, already shown above, we apply the 
deterministic flight shift model with demand 
increased by 20% and 50% to explore how the model 
performs with different demand levels. We also apply 
the model with flight shift fixed cost changing from 
0.5 to 15 hours to test how the flight shift fixed cost 
influences the reassigned schedule.  

• Demand Levels 
Sensitivity analysis with different demand levels 

evaluates the utility of the model in the future with 
growing demand. Figure 2 describes how flight 
demand influences the efficiency of the model. 
Orange, grey and yellow lines represent the saved 
penalty of 11 capacity scenarios of flight shifting 
model with 2015 flight demand, 20% increased 
demand and 50% increased demand, using 12-hour 
flight shift fixed cost. The saved penalty is calculated 
by subtracting total cost of model with flight shifting 
from total cost of model without flight shifting. 
Saved total penalty increases dramatically when 
flight demand increases. The average weighted saved 
costs of shift model with 2015 flight demand, 20% 
increased demand and 50% increased demand are 
32.29, 319.25, and 1828.00 flight hours per day. 
Compared to the baseline case, in the 20% and 50% 
increased demand cases, the average weighted saved 
costs are 9.9 and 56.6 times of the baseline case, 
respectively. Thus, the flight shift model can save 
more cost when the flight demand is higher but the 
MAR airport capacities are not enhanced. In addition, 
Figure 2 implies the model will save more cost under 
worse condition, i.e. capacity scenario 4, 8, 10 and 
11. The saved penalty for capacity scenario 11 is 
around 5 times of the saved penalty for capacity 
scenario 1, 2, 3, 5, 6 and 9, with 50% increased 
demand. Overall, it is obvious that cost savings for 
capacity scenarios 4, 8, 10 and 11 are much greater 
compared to the other scenarios, where capacity is 
considerably greater. 

 

Figure 2. Saved Penalty Under Different Demand 
Levels 

Figure 3 shows the fraction of shifted flights 
with different flight demand levels for 12-hour fixed 
cost flight shift model. The fraction of shifted flights 
increases rapidly when flight demand level increases. 
There is huge amount of shifted flights under 
extremely bad capacity scenarios. The fractions of 
shifted flights under capacity scenario 4, 8, 10 and 11 
are much more than that of other capacity scenarios. 
The fraction of shifted flights for capacity scenario 
11 is more than six times higher than that of capacity 
scenario 1 (with highest probability in 2015) with 
20% increased demand. Under extremely bad 
capacity scenarios, not only the flight will experience 
huge delay, but also it will cause large amount of 
delay to its later flights.  In addition, the fraction of 
shifted flights under worse capacity scenarios (i.e. 
capacity scenario 4, 8, 10, 11) increases slower than 
that of relatively better scenarios as demand 
increases. Capacity scenario 1, 2, 3, 5, 6 and 9 have 
about 4 times more shifted flights with 50% 
increased demand level than 20% increased demand 
level, while worse capacity scenarios including 4, 8, 
10, and 11 only have less than twice more shifted 
flights.  

 

Figure 3. Fraction of Shifted Flights Comparison 
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• Flight Shift Fixed Cost 
Flight shift fixed cost is the main part of flight 

shift penalty. Various costs caused by flight shifting 
needs to be penalized, including aircraft reschedule, 
passenger reassignment, disruption of connecting 
itineraries, etc. Determining the value of flight shift 
fixed cost is difficult. This subsection analyzes the 
results of the model with different flight shift fixed 
costs from 0.5 to 15 hours.  

Figure 4 shows the total cost comparison of 
models with flight shift fixed cost from 0.5 to 15 
hours and without flight shift, given 2015 demand. 
The total cost increases as flight shift fixed cost 
increases. The total cost of flight shift model with 15-
hour flight shift fixed cost approaches the total cost 
without flight shifting for most capacity scenarios. 
Although in many of the cases, the increase of flight 
shift fixed cost does not affect the total cost too 
much, in relatively low capacity scenarios, such as 8, 
10 and 11, the total cost varies significantly with the 
change of flight shift fixed cost.  

 

Figure 4. Total Cost Comparison 

Figure 5 and Figure 6 show the amount of delay 
of 11 capacity scenarios and average fraction of 
shifted flights with different flight shift fixed costs 
and 2015 flight demand. The amount of delay 
increases and the fraction of shifted flights decreases 
as the fixed cost increases. Figure 5 reveals that in 
most capacity scenarios, fractional cost savings from 
flight shifting diminish rapidly when the shifting 
penalty exceeds 9 hours. However, in scenarios 4 and 
11 there is substantial savings even when the shifting 
penalty is 15 hours. In Figure 6, the average 
percentage of shifted flight is less than 3% no matter 
the flight shift fixed cost. There is no flight shifting 
with a 27-hour flight shift fixed cost. There is a 
steady reduction in shifted flights as the shifting 

penalty increases through 6 hrs; for shifting penalties 
greater than 6 hrs the sensitivity becomes more 
pronounced. 

 

Figure 5. Delay With Different Flight Shift Fixed 
Cost 

 

Figure 6. Fraction of Shifted Flights Comparison 

Stochastic Flight Shift Model  
The deterministic flight shift model in the 

previous section provides the flight schedule that can 
save the most cost under a given MAR capacity 
scenario. These results can guide flight rescheduling 
on a day of operations. A stochastic version of the 
model can be used to modify the original flight 
schedule, which is determined roughly 6 months in 
advance. In this version of the model, the capacity 
scenario is not known, but capacity scenario 
probabilities are available. 

Model Description 
We keep most of the variables and input 

parameters from the deterministic flight shift model. 
Probabilities of each capacity scenario are 
incorporated into the stochastic flight shift model.  

Let set Q denote all possible capacity scenarios 
of a MAR. (i.e.  for New York 
MAR in 2015). The only new parameter in the 
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stochastic model, , denotes the probability of 
capacity scenario q. The decision variable, , is 
defined as the number of flights scheduled to land at 
airport  and shifted to land at airport  in an updated 
time period t under capacity scenario . The 
stochastic model is formulated as: 

 
s.t.    

 

       (5) 
 

                         (6) 
             (7) 

 

                            (8)   

             (9) 

The objective function calculates average total 
cost of flight delay and shift cost of all possible 
capacity scenarios within a MAR in a day under 
operation. Constraint (5) describes the reassigned 
arrival time at shifted airport under each capacity 
scenario cannot be earlier than the scheduled arrival 
time; Constraint (6) restricts the number of arrival 
flights landing in each time unit at each airport under 
each capacity scenario from exceeding the airport 
capacity for that time interval and that capacity 
scenario; Constraint (7) represents that each flight 
under each capacity scenario is assigned to one and 
only one airport and time period. Constraint (8) is a 
coupling constraint [3] incorporated in the stochastic 
model. It maintains that the reassigned landing 
airport is the same for different capacity scenarios for 
each flight f, but the reassigned arrival time can be 
different under different capacity scenarios. The 
shifted landing airports of flights in daily schedule 
will be determined in advance, so only reassigned 
arrival time is flexible.   

Sensitivity analysis 
This section analyzed how flight shifting in 

stochastic model performs differently with different 
levels of demand and flight shift fixed costs. We 
apply the model with flight shift fixed cost changing 

from 0.5 to 15 hours and with demand increased by 
20% and 50%. 

Figure 7 shows the total cost of the stochastic 
flight shift model including delay and flight shifting 
cost with different demand levels and different flight 
shift fixed costs. At 2015 delay levels, flight shifting 
can result in considerable cost savings if the fixed 
flight shifting cost is 2 hrs or less. This threshold 
increases to around 6 hrs for a 20% demand increase 
and 12 hrs for a 50% demand increase. Note that in 
the stochastic model shifting cost reflects the cost of 
changing the original schedule, which is likely to be 
substantially less than the “on-the-fly” changes 
envisioned in the deterministic model. 

 

Figure 7. Total Cost Comparison 

Figure 8 shows both the saved penalty by 
stochastic model (dashed lines) and saved penalty for 
each scenario using respective flight schedule 
generated by stochastic model (see solid lines). The 
model saves more cost under worse scenario cases. 
Some extremely bad scenarios (capacity scenario 4, 
8, 10 and 11) have larger scenario-based cost savings 
(solid lines) than stochastic cost savings (dashed 
lines). Those extremely bad scenarios have low 
probability, and most other scenarios have cost 
savings lower than stochastic total cost savings. 
Figure 9 shows that larger proportion of flights are 
shifted with higher demand level or lower flight shift 
fixed costs. Compared to deterministic model with 
2015 demand where no flight shifting with 27-hour 
or larger flight shift fixed cost, the stochastic model 
stops assigning flight shifting when flight shift fixed 
cost is greater than or equal to 12 hours.  
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Figure 8. Total Saved Penalty Comparison 

 

Figure 9. Fraction of Shifted Flights Comparison 

Both the deterministic and stochastic flight shift 
models and their analysis were presented in this 
section. Deterministic model can be applied to 
generate flight shift schedules on a day of operations 
when the capacity scenario is known. The stochastic 
model provides the flight shift schedules long time 
before the studied date of operation, by considering 
the probabilities of different capacity scenarios 
instead. This section provides models for generation 
of both short-term and long-term flight shift 
schedules. The results analyses show that both 
deterministic and stochastic models can save 
significant cost even when the shifting penalties are 
fairly high.  

Conclusion 
Demand and supply imbalance at airports lead to 

airport congestion, flight delays, and consequent 
environment impacts. For multiple airports in MARs, 
the supply-demand relations could vary, both at 
tactical and strategic levels. Thus, it is desirable to 
utilize the excess capacities in MARs to mitigate 
airport congestion and reduce flight delays. In this 

study, we found that shifting flights among airports in 
New York MAR, especially for low capacity 
scenarios, can reduce the system delay significantly. 
The determination of flight shifting is dependent on 
the fixed cost of shifting flights, including passenger 
transfer, aircraft dispatching, airport changing fee, 
connection to next flight, etc. Under low capacity 
scenarios, even with large flight shift fixed cost, e.g. 
15 hours, there are still some flights shifted among 
airports to reduce the systemwide flight delay cost. 
Both deterministic and stochastic flight shift models 
bring more benefits at higher demand levels. It will 
be a useful tool for MARs with growing demand and 
restrictions of expanding airport capacities in the 
future.  

In this paper, we extended capacity scenarios 
analysis on multiple airports in MAR and proposed 
the idea of flight shifting within MAR under different 
capacity scenarios. Both deterministic and stochastic 
models are proposed in this study, where 
deterministic model is for generation of short-term 
flight shifting and the stochastic model is flight 
shifting in the original schedule. Stochasticity is 
considered based on the probability of each capacity 
scenario. 

One future research direction is to apply the 
capacity analysis and flight shift model at other 
MARs and understand the nationwide potential 
benefits of flight shifting. New York MAR is taken 
as the case study in our study given its well-known 
important role in national airspace system. The same 
analysis could be applied to other identified MARs as 
well. Another direction is to explore the way of 
determining the flight shift fixed cost. Lastly, we may 
incorporate airline equity considerations into the 
flight shift model. For example, we could impose an 
upper limit of the flight shifting for each airline. We 
may also construct an inequality penalty term and 
add that in the objective function. 
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