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A B S T R A C T   

This research proposes a framework of Unmanned Aircraft Vehicles (UAV) system traffic man-
agement in the context of parcel delivery in low-altitude urban airspace, including clustering- 
based UAV path planning, Unmanned Aircraft System Traffic Management (UTM) with conflict 
detection and resolution (CD&R), and mechanism design for airspace resource allocation. For 
UAV path planning, we develop a procedure by first clustering a large variety of obstacles that 
arise from building heights and terrain topology and can impede UAV flying. Based on the 
clustered obstacles, Saturated Fast-Marching Square (Saturated FM2) algorithm is then employed 
to generate optimal and alternative paths for each UAV mission. While identifying the optimal 
and alternative paths does not consider UAV traffic interactions, several traffic management 
models are proposed to efficiently allocate spatial and temporal airspace resources to UAV mis-
sions. The UTM models determine the departure time and the path to take for each UAV flight 
while resolving path conflicts from different perspectives. Specifically, four UTM models are 
proposed: Sequential Delay (SD) Model, Sequential Delay/Reroute (SDR) Model, Full Optimiza-
tion (FO) Model, and Batch Optimization (BO) Model. Among the four models, the BO model is of 
particular interest as it strikes a balance between seeking a system optimum solution and 
maintaining computational tractability. Given that traffic management requires private infor-
mation from UAV operators, the Vickrey-Clarke-Groves (VCG) mechanism is further adapted to 
the UTM context, in which airspace resource allocation is performed in conjunction with a 
payment scheme to incentivize truthful private information reporting by UAV operators. Exten-
sive numerical analysis is conducted with San Francisco as the case study area. The results show 
the effectiveness of the proposed framework, particularly the scalability of the BO model. We also 
find that payment by a UAV flight under the adapted VCG mechanism depends critically on traffic 
density and the extent of interaction the UAV flight has with other flights.   

1. Introduction 

The explosive growth in e-commerce, increasing urgency of de-carbonization, and rapid advances in technologies and the gig 
economy are driving dramatic changes in urban package delivery. In New York city, for example, more than 1.5 million packages were 
delivered daily in 2019 (Haag and Hu, 2019). As a result of the large volume, we are seeing an increasing number of delivery trucks and 
vans entering and driving around cities every day, contributing to greater traffic congestion, air pollution, noise, road deterioration, 
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and safety concerns. Meanwhile, many delivery service providers, including Amazon, UPS, and DHL, have opened urban warehouses 
near or in city centers from which last-mile deliveries to customers are performed (Haag and Hu, 2019; Young, L. 2020a; Young, L. 
2020b). The large number of online orders from restaurants, stores, and urban warehouses – especially during the COVID-19 pandemic 
– along with the expectation of delivery within an order of hours (SupplyChainBrain, 2020) have exacerbated the need for new de-
livery solutions to meet the demand. 

While various innovations have been considered (Kafle et al., 2017; Ranieri et al., 2018; Le et al., 2019; van Duin et al., 2020; 
González-Varona et al., 2020), delivery by Unmanned Aircraft Vehicles (UAV), or drones, is increasingly perceived as an integral part 
of the future solution for urban freight movement to provide fast, point-to-point deliveries. Established logistics companies and 
startups have already begun using drones in package delivery: FedEx Express and Wing Aviation have completed their first scheduled 
commercial-to-residential drone deliveries in the US (Norman, H., 2019). In 2019, UPS got the first broad FAA approval for drone 
delivery (Josephs, L., 2019). Amazon has also received such approval for its Prime Air drone delivery fleet (Palmer, A., 2020), whose 
cost of delivery per package is estimated to be only two thirds or less of traditional ground vehicle-based delivery (Sudbury and 
Hutchinson, 2016). 

UAV delivery has several advantages over traditional parcel delivery, such as shorter delivery times, lower maintenance costs, and 
environmental friendliness (Lee et al, 2016; Lim and Jung, 2017). When deployed at a sufficiently large scale, UAV delivery may also 
help reduce road safety risks and mitigate traffic congestion on the ground. Moreover, as a result of the COVID-19 pandemic, the trend 
of shifting from physical stores to online shopping has been accelerated by roughly five years (Perez, S., 2020). It thereby imposes even 
greater pressure on logistics service providers, which are struggling in soliciting sufficient workers to meet the delivery requests. In the 
midst of the pandemic, delivery workers are exposed to a high risk of virus infection due to frequent contacts with store staffs and 
customers during order pickup and delivery. UAV delivery, which is contact free, can help mitigate the spread of the virus as well as 
solve the imbalance between order demand and delivery capacity, if not for the current pandemic, then perhaps for a future one. 

With potentially large demand for UAV delivery in the foreseeable future, the need for and importance of efficiently managing UAV 
traffic in urban airspace is arising. Many countries have already started developing UAV Traffic Management (UTM) methods 
(Kopardekar et al, 2016; Unmanned Airspace, 2019). The subject has attracted many interests in the research community (Labib et al, 
2019; Ho et al, 2019a). While there is a body of literature on how to optimally configure urban delivery systems with UAVs, most 
existing research does not consider the UAV delivery problem in the context of traffic management. Yet the ability to safely and 
efficiently resolve conflicts will become increasingly urgent as the use of UAVs for urban package delivery and other purposes in-
tensifies. To our knowledge, there has been little research on integrating traffic management with UAV delivery. Study of strategic 
traffic management in the context of an UAV delivery system, in particular the systematic efficient allocation of congestible airspace 
resources to UAVs, is particularly lacking. Prior work on planning UAV delivery systems has focused on problems such as UAV ver-
tiports facility location problem (Vascik and Hansman, 2019; Fadhil, 2018; Rath and Chow, 2019), maximizing the number of 
delivered packages by UAV while satisfying battery consumption constraints (Kim et al, 2020), and evaluation of collision risk in small 
UAV systems (Weinert et al, 2018). There has been limited research on Conflict Detection and Resolution (CD&R) models for high 
traffic densities of UAVs. While some In-Flight CD&R methods have been recently proposed and studied (Foina et al, 2015; Yang et al, 
2016; Ho et al, 2019c), strategic Pre-Flight CD&R methods remain mostly unexplored (Ho et al, 2019b). None of the studies are 
concerned with identifying and efficiently resolving path conflicts in a UAV system that features the high traffic intensities that may be 
required to meaningfully relieve road congestion or reduce pandemic spread. 

This paper attempts to fill this gap. We propose a systematic approach for assigning departure times and paths to UAVs with 
heterogeneous cost functions traveling between a pre-determined set of origins and destinations with fixed desired departure times, in 
a manner that resolves all UAV conflicts while maintaining safe distances from airborne obstacles. In addition, since solving this 
problem requires information from individual UAVs, which is likely to be private and unknown a priori to the system planner/central 
controller, it is important to ensure that individual UAV operators report private information truthfully. To accomplish the above, we 
develop a suite of methods which includes clustering-based UAV path planning, hybrid time/route-based traffic management 
modeling that embeds conflict resolution, and mechanism design to elicit truthful information from UAV operators. Given a set of 
specified UAV missions and operator preferences, we propose and compare several traffic management models of varying sophisti-
cation and complexity to schedule and route the UAV flights in a manner that avoids conflicts. In particular, we propose models that 
can yield high-quality, near-optimal solutions for UAV scheduling and routing while requiring short computation time. Furthermore, 
to elicit truthful preference information from the operators, we adapt the Vickrey-Clarke-Groves (VCG) mechanism to our context by 
which UAV operators pay for their missions when their UAV trajectories involve conflicts with other missions. 

This rest of the paper is organized as follows. Section 2 reviews the related work on UTM. The methodology adopted in this paper is 
described in Section 3. Section 4 presents the modeling and simulation results using San Francisco as the case study context. Con-
clusions are summarized in Section 5. 

2. Literature review 

UAVs have the potential to significantly reduce the cost and time of making last-mile deliveries. To investigate this, many re-
searchers have worked on routing UAVs in the context of Vehicle Routing Problems, where UAVs are utilized in conjunction with 
trucks in last-mile delivery (Murray and Chu, 2015; Murray and Raj, 2020). Multi-trip vehicle routing problems for UAV delivery that 
reduce delivery time and cost are proposed in Dorling et al. (2017). Ferrandez et al. (2016) investigate the effectiveness of UAV de-
livery by looking at the reduction in overall delivery time and energy for an integrated truck-UAV network compared with truck-only 
delivery system. Boysen et al. (2018) schedule UAV deliveries for truck routes considering trucks as mobile landing and take-off 
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platforms. 
Besides routing, path planning is of vital importance in UAV delivery, so that UAVs can avoid obstacles while accomplishing 

missions. Sathyaraj et al. (2008) compare multiple algorithms, including Dijkstra’s algorithm, Bellman Ford’s algorithm, Floyd- 
Warshall’s algorithm, and A* algorithm, for UAVs path planning. The authors find that A* algorithm performs better than the others. 
A* with Jump Point Search (JPS) and A* with Rectangular Symmetry Reduction (RSR) are improved path planning algorithms based 
on A* (Botea, Mueller and Schaeffer, 2004; Harabor, Botea and Kilby, 2011; Harabor and Grastien, 2011). Duchoň et al. (2014) find 
that A* (JPS) has better performance than A* (RSR). Fast-Marching methods have also been found to yield consistent, accurate, and 
highly efficient solutions in path planning around obstacles (Sethian, J.A., 1999) and thus can be adopted for UAV path planning 
(Valero-Gomez et al., 2013). In addition, Rapidly Exploring Random Trees (RRTs) have been used to search for a path for a multirotor 
(Janjoš et al., 2017). Optimal control is another widely used trajectory-optimization approach in aviation. Ng et al. (2014) use optimal 
control to develop flight trajectories that approximately minimize aircraft travel time and fuel burn. Our previous work compared 
several path planning algorithms and concluded that Fast-Marching methods outperform several other path planning algorithms (Li 
and Hansen, 2020). 

Several studies have been conducted on other aspects of system planning for UAV delivery. (Torabbeigi, Lim and Kim, 2020) 
address the strategic operation planning of UAV-based parcel delivery problems considering payload effects on battery consumption 
rate. A distance-constrained mobile hierarchical facility location problem is adapted in (Shavarani et al, 2018) to determine the 
optimal number and locations of launch and recharge stations for UAVs, with the objective of minimizing system costs. 

With potentially large UAV delivery demand, managing UAV traffic in urban airspace becomes necessary. NASA (Kopardekar et al, 
2016) and the Netherlands Aerospace Centre (Unmanned Airspace, 2019) have been developing UTM systems, as have agencies in 
other parts of Europe, Singapore, and Korea. Kim et al. (2020) employs a Mixed-Integer Linear Programming (MILP) model for 
generating UAV delivery task sequence to maximize number of delivered packages using building rooftops in cities. Weinert et al 
(2018) analytically estimate the collision risk of small unmanned aircrafts at low altitudes in nonterminal airspace. Weibel et al. (2012) 
derived preliminary separation standards for UAVs analytically in terms of both time and distance. A simulation framework is pre-
sented in (Peinecke and Kuenz, 2017) that can load a given urban airspace with a specified demand or frequency of delivery UAVs and 
resolve conflicts without introducing too much delay for delivery. Though many UTM concepts are presented, UAV safety separation 
and conflict resolution standards are studied, and strategic planning models for UTM are proposed, no research has investigated 
systematic and efficient allocation of low-altitude urban airspace to UAVs. Determining which conflict flight is going to take action to 
avoid conflict, whether a UAV flight is to be delayed or rerouted to avoid conflict, how to efficiently assign delays, and which path to 
take if an UAV flight is rerouted to avoid conflict, are examples of allocation problems that have not been studied. 

An important aspect of resource allocation is the design of economic mechanism that involves agents who act in their own interests 
and possibly against the interest of the designer. The VCG mechanism is a generic truthful mechanism for achieving a socially-optimal 
solution. It incentivizes every agent to truthfully report their preference information. Existing research uses mechanism design for 
flight slot assignment and manned Air Traffic Management (ATM). Ball et al (2020) define and investigate quantity-contingent auc-
tions as a mechanism for allocating airport arrival and departure slots. Hoffman et al (2012) propose a mechanism design for assigning 
flight reroutes and ground delays which is flexible enough to admit real-time operational changes made by the FAA and changing 
preferences of NAS users. Zou et al (2015) propose a mechanism design for public parking slot assignment in an environment 
empowered by ubiquitous communications between infrastructure and vehicles. Mechanism design for efficient airspace resource 
allocation in the context of UAV delivery has not yet been explored. We also intend to fill this gap in the present paper. 

Fig. 1. Methodology overview  
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3. Methodology 

We consider a system for strategic UTM whereby, prior to departure, flight paths and, if necessary, departure delays are assigned so 
that conflicts (i.e. loss of separation) between UAVs are eliminated. In practice, this strategic management layer would be com-
plemented by a tactical layer, presumably based on automated self-separation, which would be used to resolve conflicts introduced by 
stochastic factors such as winds, control errors, and UAV performance variability that are not explicitly considered in the strategic 
layer. The strategic layer can be more or less conservative, and thus place lesser or greater burden on the tactical layer, by varying the 
criteria used to determine conflicts. While the interaction between these two layers is an important research area, the focus of this 
research is solely on the strategic layer. 

Our methodology includes four components required to simulate and evaluate the proposed strategic UTM including UAV path 
planning, conflict detection, strategic conflict resolution, and mechanism design. Fig. 1 shows the overview of the methodology. Four 
different UTM models are proposed for UAV flight scheduling and conflict resolution. Some of the models require true flight operator 
preferences information, leading to the need for the mechanism design component. 

3.1. Deterministic clustering-based single UAV path planning 

We assume a set of UAV flights, each with a given origin, destination and desired departure time. For each flight we must determine 
a set of desirable 3D routes. The path planning approach is simplified by assuming a set of discrete altitudes, and finding the shortest 2D 
path at each altitude. The optimal travel altitude is determined by minimizing a linear cost function associated with both horizontal 
and vertical flying. In order to generate the most representative altitude candidates based on the topography of terrain and the 
elevation of building obstacles, we employ a clustering approach to characterize the height and proximity of the numerous static 
obstacles in a dense urban area. Based on the generated altitude candidates set, horizontal shortest paths that avoid obstacles are then 
be generated for each altitude candidate. We compare the vertical and horizontal costs to decide the optimal travel altitude and 2D 
cruise path at that optimal altitude. We also identify an optimal 2D path at a different altitude, which may be used in order to resolve 
conflicts. 

3.1.1. Static obstacles clustering for altitude candidates 
A set of altitude candidates is generated by clustering static obstacles. Static obstacles in urban airspace include topological ob-

stacles (e.g. hills) and above-ground obstacles (e.g. buildings). A 10-meter keep-out geofence distance is added to above-ground ob-
stacles to reduce the risk of collisions with buildings. UAVs also maintain 10-meter keep-in geofence distance. We combine the gridded 
elevation maps of topological and above-ground obstacles, which are represented by elevation at many grid points on a one arc-sec grid 
system, as the elevation map of all static obstacles. Fig. 2 shows the elevation map of all static obstacles in San Francisco. Then, we 
generate virtual buildings to represent all obstacles in the study area, including topological and above-ground obstacles. Each grid in 
the elevation map is regarded as a virtual building (e.g. the red square in Fig. 2 represents one such virtual building). The elevation of 
each virtual building is the maximum elevation of the four grid vertices. 

The K-means clustering algorithm is applied to perform clustering over all virtual buildings. Through clustering, a very large 
number of elemental static obstacles will be represented as a much smaller number of clusters. Obstacles in each cluster are similar in 
height and location. Since the K-means clustering algorithm requires the same feature dimensions for every obstacle observation, each 

Fig. 2. San Francisco virtual buildings in one arc-sec grid system representing all static obstacles including both topological and above- 
ground obstacles 
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virtual building is characterized by nine features: X and Y coordinates of four grid vertices plus virtual building elevation. While all 
variables are measured in meters, elevation is unique because it determines obstacle height. For this reason, the elevations of virtual 
buildings are rescaled with appropriate rescaling factors. 

After clustering, the elevation of a cluster is the maximum elevation of virtual buildings in the cluster. With 30-meter vertical 
separation distance (Ren et al, 2017) between small UAVs, we combine the altitudes of clusters that are within 30-meter vertical 
distance. Table 1 shows the algorithm to combine altitudes. We use the combined altitudes as our altitude candidates set for horizontal 
path planning. 

3.1.2. Optimal horizontal travel route 
Shortest horizontal travel paths are generated at altitude candidates obtained from subsection 3.1.1 for each UAV mission. The 

Saturated Fast-Marching Square (Saturated FM2) algorithm (Valero-Gomez et al., 2013) is used to generate the shortest cruise path 
that avoids static obstacles. Compared to the traditional Dijkstra algorithm or A* algorithm, Fast Marching methods (FM) replace the 
graph update by a local resolution of gradient descent, instead of only considering standard eight directions of neighbors, which 
significantly reduces the grid bias. After comparing several shortest path algorithms, Li and Hansen (2020) found that FM is the most 
efficient method in terms of both computation time and solution quality for UAV horizontal path planning. Compared with traditional 
Fast Marching Algorithm, Saturated FM2 imposes a speed penalty that increases continuously with proximity to obstacles within a 
specified threshold distance. We use the distance map to all obstacles as a speed map and assure the maximum allowable speed once a 
UAV is at least 10 m away from obstacles. In most cases, a UAV will maintain 10-meter keep-in geofence distance from obstacles to 
avoid a speed penalty. However, a UAV may trespass this keep-in geofence and stay within 10 m to an obstacle (whose boundary 
includes a 10-meter keep-out geofence) if the resulting travel time penalty is less than the extra travel time of another possible path. 

3.1.3. Determining optimal travel altitude and path 
To decide the optimal travel altitude, we must balance the horizontal path length savings from cruising at a higher altitude (with 

fewer obstacles) against the additional cost of ascent and descent. Several existing studies have used horizontal and vertical costs to 
measure path costs in UAV path planning. For example, Scherer et al. (2009) use horizontal and vertical cost ratio, and Bagherian and 
Alos (2015) use horizontal and vertical path length costs for UAV trajectory planning. 

In this study, we assume that all UAV flight demands are generated from buildings, and origins and destinations are on building 
rooftops. We assign the elevation of origin and destination rooftop points as the origin and destination altitudes of the corresponding 
flight. For each flight, the shortest horizontal path is generated at each candidate altitude from subsection 3.1.1. Total travel cost 
including ascent, horizontal travel, and descent costs is calculated at all candidate altitudes. Flying costs are assumed to be propor-
tional to the distance of flying, with the unit-distance cost ratio among ascent, descent, and horizontal flying to be 2.04: 1.53: 1 
following Liu et al. (2017). The best flying path corresponds to the flying altitude with the lowest total cost. An additional flying path is 
further identified which corresponds to the horizontal flying altitude with the second-lowest total cost. The latter path is considered as 
an alternative to resolve potential conflicts between UAV paths. 

3.2. Traffic management models 

In this section, we propose four traffic management models of varying sophistication, each of which aims to efficiently schedule and 
route each UAV flight while resolving UAV path conflicts. We start by detecting flight pairs whose candidate paths create spatial 
conflicts. A spatial conflict is also as a temporal conflict if, based on the desired departure times of the two conflict flights, there would 
be simultaneous occupancy of the conflict region. The temporal conflicts must be resolved by means of either departure delay or an 
alternative path. Traffic management models will decide how to assign delay or to reroute flight to resolve each temporal conflict. 

The four proposed models, in order of simplicity, are the sequential delay (SD) model, the sequential delay/reroute (SDR) model, 
and two optimization models. The SD model assigns flights a priority order, and resolves a conflict between two flights by delaying the 
flight with lower priority. A desirable feature of this model is that it requires no inputs other than the desired routes and the flight 
sequence, which might be established, for example, by the order in which UAV flight requests are received by the traffic manager. The 
SD model also serves as a benchmark for the other models. The SDR model is also based on flight priority, but may resolve a conflict 
either by delaying a flight or assigning the flight a different path (or possibly both). This model requires UAV operators to submit cost 
information so that the model can choose the conflict resolution strategy with the least cost. 

Table 1 
Algorithm for combining altitudes  

Input Elevations of all clusters Hcluster 
Output Altitude candidates set Hcandidate 
1 Sort Hcluster in descending order 
2 Alt = Hcluster[0] = the first element in Hcluster 
3 Add Alt to Hcandidate 
4 While Alt − 30 ≥ Min(Hcluster): 
5 Alt = the first element in the sorted subset of Hcluster that is lower than Alt − 30 
6 Add Alt to Hcandidate 
7 End while  
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In contrast to the sequential models, the optimization models assign delays and paths in order to minimize the total cost of 
eliminating all conflicts. For these models, the traffic manager requires additional cost information for each UAV mission. Further, to 
assure that operators provide truthful information, this model must be paired with a mechanism design that is incentive compatible. 
One version - the full optimization model - considers all flights at once, which yields the true optimal solution but can be computa-
tionally intensive. This motivates a variant of the model which assigns flights in batches that are constructed so that most conflicts are 
between flights in the same batch. We term the full and batch optimization models as FO and BO respectively. Flight conflicts between 
batches are resolved sequentially based on batch priority. We will show later that BO will yield still very high-quality solution, while 
running much faster than the FO. 

A critical underlying assumption of SDR, FO and BO is that there exists a central manager who has certain cost information for all 
UAV flights. FO and BO require more information than SDR. For example, the unit delay cost of an UAV flight, which may depend on 
the urgency of the package to be delivered. With the delay cost information, traffic management models can assign departure delay or 
alternative route to UAV flights while minimizing system total cost. SDR only needs the ratio of unit delay cost to unit path cost for each 
UAV flight, while FO and BO need more information to compare costs among different UAV flights. In addition, though UAVs could 
hover during flight, assigning departure delay can reduce the number of UAVs hovering in the airspace (Neufville and Odoni, 2003), 
reducing power consumption and risk. Self-separation to avoid potential conflicts/collisions is not considered at this stage, but can be 
applied in the tactical traffic management layer, as discussed above. 

3.2.1. Spatial conflict detection 
Spatial conflict flight pairs are detected as input for traffic management models. Any two flights with paths that spatially conflict 

form a spatial conflict flight pair. Both the optimal and the alternative paths of the flights are considered when identifying spatial 
conflict pairs. If more than two flights are in conflict, the conflicts will be represented by multiple pair-wise conflicts. 

Fig. 3 illustrates how a spatial conflict is identified. In the figure, the two flights (represented by the yellow and blue paths) are 
northbound. A 10-meter buffer is added to each UAV path. If flight 1 taking the orange path and flight 2 taking the blue path are at the 
same altitude, then their path overlap indicates a spatial conflict. The overlap area ABCD is defined as the conflict region. Si and Ei are 
the entry and exit points of flight i, i = 1,2. Point C is defined as the boundary point of the conflict region closest to the origin of flight 1. 

Fig. 3. An illustrative example of a pair of spatially conflict flight paths  

Table 2 
Algorithm for detecting spatial conflict pairs.  

Input Optimal path and alternative paths of N UAV flights in the system 
Output Spatial conflict flight pairs Spatial conflict pairs, with travel time from origin to the entry and exit points of conflict region for each spatial conflict flight 
1 Add 10-meter buffer to each UAV flight path 
2 Spatial conflict pairs = []

3 For any two paths of any two different flights: 
4 If two paths are at the same altitude and overlapped: 
5 Define the intersected region as conflict region 
6 Find entry and exit points of conflict region for two paths (S1,E1,S2,E2) 
7 Calculate travel time from origin to entry and exit points of the conflict region 
8 Add IDs of the two flights, corresponding path IDs, and travel time to the entry and exit points of conflict region to Spatial conflict pairs 
9 End if 
10 End for  
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Point A is defined as the boundary point of the conflict region closest to the destination of flight 1. As such, S1 is the orthogonal 
projection point of point C to the path of flight 1. E1 is the orthogonal projection point of point A to the path of flight 1. S2 and E2 are 
similarly identified. 

Note that two spatially conflict flights may temporally conflict as well depending on when will they pass through the conflict 
region. One way to resolve a conflict is to delay a flight at its departure end. The amount of departure delay for a flight is determined 
such that no more than one flight will be in the conflict region at a given time. More specifically, one of the spatial conflict flights must 
exit the conflict region (i.e. passing the exit point) before the other one enters the conflict region (i.e. passing the start point). 10s are 

Table 3 
Algorithm of the SD model  

INPUT Flight priority order order; Scheduled departure time S[i] for flight i ∈ F; 
OUTPUT Assigned departure time t[i] for i ∈ F 
1 Define an empty set of assigned flights: assigned = [ ]

2 Add the first flight ID in orderto assigned with scheduled departure time 
3 For flight f in order starting from the second flight: 
4 Check with each assigned flight in assigned and get subset s conthat are spatially conflict with flight f . 
5 Define an empty set TemConflict to store temporal conflicts between any assigned flight and flight f. 
6 Define an empty set TriggerConflict to store newly triggered temporal conflicts from delay assignment 
7 TemConflict = Select flights in assigned that are in temporal conflict with f. 
8 Calculate the delay of f to avoid conflict with any flight i, delay[i], ∀ flight i in TemConflict. 
9 Delaynow = Maxi∈TemConflict(delay[i])
10 TriggerConflict = Select flights in s con that enters conflict region after f exits. 
11 No temporal conflict occurs at this point between f and flights in TriggerConflict, but these spatial conflicts may become temporal conflicts after f is 

delayed. Calculate the delay upper bound of f that will not trigger any of these spatial conflicts to become temporal conflict delayub. 
12 If TriggerConflict is empty or Delaynow < delayub: 
13 Assign delay Delaynow to flight f 
14 End current iteration and go to next flight at step 3 
15 Else: 
16 Stay in current flight iteration, replace the departure time of flightf: s[i] = s[i] + Delaynow, then go to step 4 
17 End if 
18 End for  

Table 4 
Algorithm of the SDR model  

Input Flight priority orderorder; Scheduled departure time S[i] for flight i ∈ F; Alternative paths set P of each UAV flight 
Output Assigned departure time t[i] for i ∈ F 

Assigned path of each UAV flight p[i]for i ∈ F. p[i] = 0 if taking optimal path, 1 if taking second alternative path, 2 for third… 
1 Define an empty set of assigned flights: assigned = [ ]

2 Add the first flight ID in orderto assigned with scheduled departure time and optimal path 
3 For flight f in order: 
4 Check with each assigned flight in assigned and get subset s conthat spatially conflict with flight f considering all alternative paths. 
5 Define an empty set TemConflict to store temporal conflicts between any assigned flight and flight f 
6 Define an empty set TriggerConflict to store newly triggered temporal conflicts from delay assignment 
7 For each assigned flight f’ in s con: 
8 If f and f’ are in the conflict region at the same time: 
9 f will be delayed for time d and enter conflict region 10 seconds after f’ exits 
10 Add f and f’ taking corresponding paths to TemConflict 
11 Else if f exits conflict region 10 seconds before f’ enters: 
12 No temporal conflict occurs at this point, but this spatial conflict may become temporal conflict if flight is delayed because of other spatial 

conflicts. Calculate the delay upper bound that will not trigger this spatial conflict to become temporal conflict delayub[f,p]. 
13 Add f taking corresponding path and delayub[f, p] to TriggerConflict 
14 Else if f’ exits conflict region 10 seconds before f enters: 
15 No temporal conflict. 
16 End if 
17 End for 
18 Define an empty set Pathcost 
19 For any path j ∈ P of flight f: 
20 PathConflict = select subset from TemConflict where f takes pathj 
21 Delay of taking path j with all conflicts resolved= maximum delay in PathConflict 
22 Add the sum of delay cost and path cost taking path j to Pathcost 
23 End for 
24 Assign the path with smallest total cost to f, p[f] = np.argmin(Pathcost)
25 If the delay of taking path p[f] <Min (delayub[f ,p]) ∀(f,p) ∈ TriggerConflict :

26 End current iteration and go to next flight at step 3 
27 Else: 
28 Stay in current iteration, replace the departure time of flightf: s[i] =s[i]+ delay of taking path p[f ], then go to step 4 
29 End if 
30 End for  
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further added as a buffer, so that an entry of one conflict flight cannot occur until 10s after the other conflict has exited. The time that 
each flight needs to travel from its origin to the entry point of a conflict region (e.g. for flight 1 in Fig. 3, the time from the origin to S1) 
and the time needed to pass through the conflict region (S1 to E1) are computed for each detected spatial conflict flight pair. The traffic 
management models assign delays and alternative paths in order to avoid temporal conflicts. Table 2 describes the algorithm of 
detecting all spatial conflict pairs in the system. 

3.2.2. Sequential delay (SD) model 
In the SD model, each flight is assumed to take its optimal path and is randomly assigned a priority order. The order is assigned 

randomly although other ordering schemes, such as based on scheduled departure time, could also be used. The SD model assigns a 
departure time to each UAV flight that avoids conflicts with higher priority flights iteratively. Table 3 provides a detailed description of 
traffic assignment under the SD model. 

3.2.3. Sequential Delay/Reroute (SDR) model 
Similar to SD model, SDR model is also based on flight priority order, but may resolve a conflict either by delaying a flight or 

assigning the flight a different path (or possibly both). As discussed in subsection 3.1, each flight is given two alternative paths: the 
shortest path at the optimal altitude and the shortest path at the second-best altitude. A conflict may be resolved by assigning a path at 
the second-best altitude, or by introducing some departure delay. The SDR model iteratively returns the assigned departure time and 
path to each UAV flight, one flight at a time per the priority order. At each iteration, we check the temporal conflicts of the current 
flight with each of the assigned flights, which have higher priority order. The departure time and path with the least cost will be 
assigned to the current flight. See Table 4 for the detailed description of the algorithm for performing SDR traffic management model. 

3.2.4. Full optimization (FO) model 
The FO model efficiently assigns path and departure time to each UAV mission to minimize total cost. The UAV path planning 

method from subsection 3.1 is also applied in FO to generate two alternative paths for each flight: the shortest path at the optimal 
altitude and the shortest path at the second-best altitude. With the above setup, we now present the formulation of the FO model. 

Let us first specify the sets involved in the formulation. We use F to denote the set of UAV missions (flights) in the system. P denotes 
the set of paths each UAV mission can choose from. C denotes the set of conflict UAV flight pairs, which includes all the spatial conflict 
flight pairs as determined in subsection 3.1. Each element in set C includes IDs of the two spatially conflict UAV flights and the 
corresponding conflict paths. Each flight has two alternative paths. In addition to sets, we also introduce the decision variables and 
parameters, as shown in Table 5. 

The formulation of the MILP is shown below. The objective function is the system total cost, including delay cost of all UAV 
missions, 

∑
i∈FDi, and path cost, 

∑
i∈F,j∈PcijIij. 

Min
∑

i∈F
Di +

∑

i∈F, j∈P
cijIij 

s.t. 

Di =

{
ri(ti − si) if ti − si ≤ d
rid + Ri(ti − si − d) if ti − si > d ∀i ∈ F (1) 

Table 5 
Definitions of sets, decision variables, and parameters in FO model  

Sets 
F Set of flights 
P Set of alternative flight paths 
C Set of predetermined spatial conflict flight pairs 
Decision variables 
Iij Binary variable, equals to 1 if flight i ∈ F takes path j ∈ P 
Di Delay cost of flight i ∈ F 
ti Assigned departure time of flight i ∈ F 
zc Binary variable where zc = Iij • Imn, for c = (i, j,m, n) ∈ C, ∀ i, m ∈ F; j, n ∈ P. zc = 1 if flights i and m take paths j and n (Iij = 1,Imn = 1), which are in conflict 
Xc Binary variable where c = (i, j,m, n) ∈ C.Xc = 1 if four conditions are met: 1) flight i takes path j; 2) flight m takes path n; 3) paths j and n are in spatial conflict; 

and 4) flight i exits the conflict region before flight m enters the conflict region 
xc Binary variable. Same definition as Xc except that flight m exits the conflict region before flight i enters the conflict region 
Parameters 
cij Path cost of flight i ∈ F taking path j ∈ P 
ri Delay cost coefficient of flight i ∈ F when delay is less than a threshold d 
Ri Delay cost coefficient of flight i ∈ F when delay is greater than a threshold d 
bc Travel time from path origin to the start point of conflict region for flight i in c = (i, j,m, n) ∈ C 
ec Travel time from path origin to the exit point of conflict region for flight i in c = (i, j,m, n) ∈ C 
Bc Travel time from path origin to the start point of conflict region for flight m in c = (i, j,m, n) ∈ C 
Ec Travel time from path origin to the exit point of conflict region for flight m in c = (i, j,m, n) ∈ C 
si Scheduled departure time of flight i ∈ F  
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ti + ec + t0 ≤ M(1 − Xc) + Bc + tm ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (2)  

tm + Ec + t0 ≤ M(1 − xc) + bc + ti ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (3)  

zc = IijImn ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (4)  

Xc + xc = zc ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (5)  

ti ≥ si ∀i ∈ F (6)  

∑

j∈P
Iij = 1 ∀i ∈ F (7) 

Constraint (1) specifies a piecewise linear delay cost function for each flight i ∈ F, with delay cost coefficient ri when delay is less 
than threshold d. The delay cost coefficient becomes Ri when delay is larger than d. Constraints (2) and (3) resolve possible temporal 
conflicts from predetermined spatial conflict flight pairs. One of the big M terms, M(1 − Xc) in (2) and M(1 − xc) in (3), will be cancelled 
and either one of two flights in spatial conflict may be delayed to avoid temporal conflict. If the big M term of constraint (2) is 
cancelled, flight i will pass the conflict region before flight m, and conversely if the big M term of (3) is cancelled. t0 in constraints (2) 
and (3) is a safety separation time, which is the additional time delayed flight needs to wait to enter conflict region after the other flight 
exits. t0 = 10s in our research. Constraint (4) stipulates that if flights i and m take conflict paths j and n, zc equals to one. Otherwise, 
zc = 0. Constraint (5) requires that if flight i taking path j is spatially conflict with flight m taking path n, one of Xc and xc equals to one. 
Constraint (6) means that the assigned departure time of any flight i must be no earlier than the flight’s scheduled departure time. 
Constraint (7) ensures that an UAV flight will end up choosing one path. 

In the formulation below, the nonlinear terms in the original optimization, i.e. constraints (1) and (4), are linearized and replaced 
by linear constraints (8)-(9) and constraints (10)-(12). 

Di ≥ ri(ti − si) ∀i ∈ F (8)  

Di ≥ rid + Ri(ti − si − d) ∀i ∈ F (9)  

zc ≤ Iij ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (10)  

zc ≤ Imn ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (11)  

zc + 1 ≥ Iij + Imn ∀c = (i, j,m, n) ∈ C; i, j ∈ F; j, n ∈ P (12)  

3.2.5. Batch optimization (BO) model 
Our numerical experiments confirm that the computation time needed for solving the linearized integer program of the FO model 

(with constraints (8)-(12)) grows dramatically as N becomes large, to the extent that is impractical for strategic UTM. To overcome this 
and to solve scheduling problems with a large number of delayed flights (Samà et al., 2013), we propose the BO model to manage 
traffic with a large number of UAV flights. The BO model reduces the computational burden of the FO model by scheduling and routing 

Fig. 4. The BO model  
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flights in groups. Specifically, UAV flights are clustered into groups based on a hierarchical decomposition of a “conflict network” 
formed by the flights through network community detection algorithms. Then we run the FO model described in subsection 3.2.4 for 
each group, based on the priority order which is determined according to the number of spatial conflicts that flights in a group have 
with flights from other groups. 

Fig. 4 illustrates the algorithm for solving the BO model, which consists of four steps. In the first step, we assign scheduled departure 
time and optimal paths to those flights which have no spatial conflict with any other flights in the system. Then, we create a node-link 
spatial conflict network for the rest of flights, where a node denotes a UAV flight and a link indicates a spatial conflict between two 
UAV flights. Any two UAV flights with their paths overlapped in the airspace regardless of time will be connected by a link. The 
network is an undirected and weighted graph. The weight is determined by the travel time passing through the conflict regions of the 
two associated flights. Since each UAV flight has multiple alternative paths, all possible combinations of alternative path pairs will be 
checked for spatial conflicts. The weight is the sum of travel time passing through conflict regions if there exist multiple conflict path 
pairs between two UAV flights. 

Once the spatial conflict network is constructed, the second step clusters flights in the network into different groups by the Louvain 
Method of Community Detection (Blondel et al, 2008), which is a percolation-inspired heuristic for community detection. The heuristic 
proceeds by iterating between two phases: the first phase is a greedy algorithm that places each node in a different community. 
Initially, there are as many communities as the number of nodes. Then each node is moved to its neighbor’s community that gives the 
maximum gain in modularity. This is repeated randomly for all nodes until no more modularity improvement can be made. The second 
phase builds a new graph where the communities from the first phase are collapsed into a single node, and the edges between 
communities collapse into single edges between the respective nodes with equivalent weights. Then the first phase is repeated on this 
reduced graph, and the iterations continue until no changes occur. In this heuristic, modularity is a metric that measures how much 
community structure a network has. For a graph with c communities, its modularity is defined as: 

Q =
1

2m

∑

v,w

[

Av,w −
kvkw

2m

]

δ(cv, cw) (13)  

where v and w denote nodes in the graph; Av,w represents the weight of the edge between v and w; kv is the sum of the weights of the 
edges attached to v; cv is the community to which v is assigned; the δ-function δ(u, v) is 1 if u = v and 0 otherwise; m = 1

2
∑

v,wAv,w. 
The third step assigns a priority order to each flight group. Different metrics may be used to assign the priority order, such as the 

sum of degree centrality within a cluster, the average scheduled departure time of cluster, and the cost increase of a cluster. The latter is 
measured by the cost difference between results from applying the optimization model on flights within the cluster (ignoring spatial 
conflicts with flights in other clusters) and the cost of all flights in the cluster taking their optimal paths and departing with no delay. 
The results using the three metrics will be compared in the next section. 

In the fourth step, we incrementally optimize the routes and schedules of each flight group, based on the group priority order. At 
each iteration, we first add constraints to remove conflicts of flights in the current group with any flight in the groups of higher priority 
order. These constraints allow flights in the current group to avoid conflicts with determined schedules of flights in higher priority 
group by either delay or taking alternative paths. With the constraints, then we apply the optimization model to the flight group under 
consideration. The overall algorithm is described in Table 6. 

3.3. Mechanism design 

A key assumption made in the previous models is that a central controller has full and correct information about unit flight delay 
and path cost, which is private and will be provided by UAV operators. However, a possible issue may arise that the UAV operators 
misreport their private information in hopes to get more favorable routes or lower delay. Similar arguments are made in other contexts, 
such as parking and airport slot auction and allocation (Zou et al, 2015; Ball et al, 2020). To address the information misreporting 
issue, we propose to adapt the VCG mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) which integrates traffic assignment with 
an accompanying payment scheme, so that each UAV operator has the incentive to truthfully reveal its private information. In other 
words, when the central controller aims to minimize system total cost based on private information submitted by UAV operators, no 
operator will find it beneficial to misreport—reporting private information other than the truth would not reduce the operator’s cost, 

Table 6 
Algorithm of the fourth step in BO model  

Input Group priority order; UAV flights group partition 
Output Schedules and assignments 
1 Assigned schedules = [ ]

2 Perform the optimization model on flights in the first group which has the highest priority, ignoring spatial conflicts with flights from other groups. Add 
flight assignment results to Assigned schedules 

3 For group i in priority order (from the second group): 
4 Add constraints to optimization model to avoid temporal conflicts with flights in Assigned schedules 
5 Perform the optimization model on flights in group i with added constraints 
6 Add flight assignment results to Assigned schedules 
7 End for  
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which consists of UAV flying cost and the payment. For example, if an operator reported a higher-than-actual delay cost, the system 
would assign a lower delay, but would also extract a higher payment from the operator, which would be no less than offset the delay 
cost saving. 

More specifically, we assume that the central controller collects information from each UAV flight i on unit delay cost (ri and Ri in 
the model formation in subsection 3.2.4), path cost by taking path j (cij) and scheduled departure time (si). The possible paths of each 
UAV flight, generated from section 3.1, are also submitted to the central controller. Based on the submitted information, the central 
controller assigns each UAV flight a specific path and departure time. In the meantime, the central controller asks for a payment from 
each UAV operator for the assigned path and departure time. In the case of one operator operating one UAV flight, the payment of each 
UAV operator (flight) i, p(i), is calculated as: 

p(i) = Call − Call(i) − C− i (14)  

where Call is the optimal system cost. Call(i) is the flying cost of UAV flight i in Call. Thus, Call − Call(i) is the system cost for all flights 
excluding flight i, while flight i is present in the system. C− i is the optimal system cost while flight i is not present in the system. Thus, 
p(i) = Call − Call(i) − C− i gives the cost difference for all other flights with and without flight i being present—in other words, the 
“externality” of flight i on the rest of the system. In the case that one operator operates multiple UAV flights, the operator’s payment 
will be the cost difference for all other flights with and without all the flights belonging to the operator being present. In this case, Call(i)
in Eq. (14) would denote the flying cost of all UAV flights of operator i. 

4. Simulation and experiments 

The section presents the UTM model results in a simulated case study of UAV traffic in San Francisco. We simulate demand that may 
include food delivery from restaurants to customers and documents or package delivery between clients in San Francisco. Demand is 
assumed to be related to building height. The traffic management models developed in Section 3 are applied and compared. In 
addition, payments needed under the traffic management mechanism in subsection 3.3 are generated and analyzed for each UAV 
flight, based on the BO model for which their computation is tractable. 

4.1. Data description 

This paper takes San Francisco (SF) as the case study area. Building footprints data and topographic data of SF are used. The 
building footprints data is obtained from DataSF (DataSF, 2020). This dataset contains above-ground-level (AGL) height and boundary 
contour of structure roof and tree canopy. Zonal statistics are available for each building footprint based on a gridded representation of 
the vector polygon, discrete for every structure. We use the maximum value of 50 cm square grids sampled in each building’s zone as 
the AGL building height. 

Considering SF’s hilly topology, it is necessary to merge the above AGL data with topographic data to obtain heights over sea level. 

Fig. 5. San Francisco building height distribution  
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The topographic data of SF is obtained from the National Oceanic and Atmospheric Administration (NOAA) Central California 1 Arc- 
second NAVD 88 Coastal Digital Elevation Model (DEM). Topographic elevation in this dataset is measured with reference to the 
vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88). The original data with latitudes and longitudes in the 
geographic coordinate system of WGS 84 / EPSG 32610 UTM zone 10 N are converted to a Cartesian coordinate system based on a 1- 
meter grid. 

We combine the two datasets to get the elevation of static obstacle with respect to NAVD 88 with topography instead of the original 
AGL building height. This results in a gridded discrete representation of elevation that incorporates both topography and buildings, at a 
grid resolution of 1 arc-second. 

4.2. OD simulation 

Origin and destination demand points for buildings are generated across the city. We assume that all UAV origin and destination 
points are on building rooftops. Taller buildings are assumed to generate more demand. The building height distribution is visualized 
in Fig. 5. Buildings in San Francisco are colored by above-ground-level building height. 

In this paper, we assume a linear relationship between delivery demand generation/attraction and building height: D =

[K+α(H − 1) ]A, where K is the demand for the first floor of building per square meter; H is the number of building floors; α is the 
demand per floor above the first floor per square meter; A is the area of building footprint. We assume K > α because retailer stores or 
restaurants are often located on the first floors. Specifically, based on Bard and Jarrah (2013), we set K = 2α. We assume 4.3 m as the 
building floor height (Wikipedia, 2020). Other demand function types are also analyzed and compared including random demand and 
quadratic relationship between demand and building volume D. In quadratic case, OD points are more concentrated in SF downtown 
area with high-rise buildings, and UAV trip length is much shorter. It also seems to have the most conflicts and congestion. We only 
show results of linear demand function in the paper. 

We randomly generate origin and destination points based on building height distribution such that the distance between origin 
and destination is between 1000 m and 10,000 m. The lower bound of this range reflects our estimate of the minimum distance at 
which an UAV may be used instead of some surface mode. The upper bound are based on UAV performance limits, including endurance 
and speed, with a margin for reaching a recharging point. The complete algorithm of OD generation is presented in Table 7. Though we 
only generate one-way UAV traffic, the random assignment of origin and destination points and different delay cost coefficient values 
(see Section 4.4) is intended to capture both “inbound” and “outbound” UAV delivery flights. 1000 UAV missions are generated for 
analysis. 

4.3. Path planning results 

UAV path planning is performed for each mission by generating horizontal obstacle-free paths at different altitudes and selecting 
the two altitudes that offer the lowest-cost paths. As discussed in Section 3.1, we represent obstacles by performing cluster analysis on 

Table 7 
Algorithm for demand generation  

Input Above-ground-level height H[i] for building i ∈ all San Francisco buildings; Top-view area A[i] of building i ∈ all San Francisco buildings; Number of OD 
pairs to be generated N 

Output A set of OD pairs 
1 For building i ∈ all San Francisco buildings: 
2 Calculate a frequency-related factor freq[i] that indicating the demand points frequency generated on each building: freq[i] = (2+

max(H[i] − 4.3, 0 )/4.3) • A[i]
3 Calculate cumulative value of freq[i]: cumfreq[i] =

∑i
j=0freq[j]

4 End for 
5 o = generate a set of 2N random values uniformly in range (0,max(cumfreq[i] )]
6 d = generate a set of 2N random values uniformly in range (0,max(cumfreq[i] )] with different random seed 
7 Define an empty set for OD coordinates: ODpair = [ ]

8 For k in (0, 2N): 
9 Oindex is the index of the first building in the list satisfyingcumfreq[i] ≥ o[k], ∀ i ∈ all buildings, where the building list is in ascending order of cumfreq. 
10 Origin point coordinate = Centroid of the footprint polygon of the building with index Oindex 
11 Dindex is the index of the first building in the list satisfying cumfreq[i] ≥ d[k], ∀ i ∈ all buildings, where the building list is in ascending order of cumfreq. 
12 Destination point coordinate = Centroid of the footprint polygon of the building with index Dindex 
13 Add origin and destination coordinates to ODpair 
14 End for 
16 Calculate distance between origin and destination points for each OD in ODpair 
18 Final demand OD pairs = ODpair with distance between OD in range [1km, 10km] 

Note: freq[i] is proportional to the volume of building i, which indicates that buildings with larger volume generate more delivery demand. The 
algorithm generates OD points by uniformly randomly selecting from a sequence of consecutive numbers and assigns demand point to the corre-
sponding building associated with the selected number, where there are freq[i] consecutive numbers in the sequence representing building i. (E.g., for 
building 0, if freq[0] = 3, in the sequence of consecutive numbers, ‘0, 1, 2′ represents demand from the first building. If number 2 is chosen randomly 
from the sequence under an iteration, there will be one demand point generated on building 0.)  
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individual grid squares. We present the clustering results of 100 clusters in Fig. 6. 
In Fig. 6, each cluster is colored by cluster elevation relative to NAVD 88 water level. Ocean areas are colored in purple. The virtual 

building height is highly influenced by topography especially for places with large topographical elevation changes. Twin peaks and 
San Bruno Mountain area have the highest obstacle elevation and are colored in red and light green. We also find sparse little obstacles 
colored in light green in the commercial area of San Francisco near Market Street, corresponding to high-rise buildings in the CBD area. 
The cluster elevation is determined by the maximum virtual building vertices’ elevation within cluster. The final set of altitude 
candidates is reduced from 100 altitudes to 10 by combining cluster elevations within 30-meter vertical distance. The final 10 altitudes 
are 542, 310, 264, 215, 172, 139, 108, 77, 46, 12 m above NAVD 88 water levels. 

As mentioned earlier, the horizontal shortest paths for each UAV mission are generated by the Saturated FM2 algorithm at each 
candidate altitude. Fig. 7 shows the horizontal shortest obstacle-free path results of an OD pair, at the altitudes of 215, 172, 139, 108, 
77, and 46 m. The saturated FM2 algorithm is applied with 10-meter safe distance, which is the distance from the closest obstacle at 
which the maximum speed can be reached. Thus, the algorithm discourages flights from coming within 10 m of obstacles. The step size 
is set to be one arc-second. It can be seen that lower altitudes require more horizontal maneuvers to avoid obstacles, although vertical 
travel cost is less. By accounting for the cost of ascent, horizontal travel, and descent, the optimal flying altitude of this UAV mission is 
found to be 108 m. The second-optimal flying altitude is 139 m. 

The distribution of the optimal altitudes for the 1,000 UAV flights is shown in Fig. 8. It can be seen that 108 m is the desired altitude 
for most flights. No flight prefers to fly at 12, 310, or 542 m, reflecting the large number of obstacles in the former case and the high 
vertical cost for minimal savings in horizonal cost in the latter two cases. Fig. 9 shows the distribution of the fractional cost difference 
between optimal and second-best paths to the optimal path cost, across the 1,000 UAV flights. The distribution is displayed using 
boxplots by the optimal flying altitude. The typical cost penalty from using the second-best path is 5 percent, but there is substantial 
variability, suggesting the advantage of re-assigning altitudes based on the cost penalties for individual flights. We also observe that 
UAV flights with higher least-cost altitudes tend to have lower cost difference fraction. Overall, the cost difference fraction of flights 
with optimal altitude at 264 m is the lowest among all altitudes, since most horizontal paths reach great circle distance between origin 
and destination starting from altitude 215 m. 

4.4. Comparison of traffic management models 

This subsection performs numerical analysis to compare the proposed four traffic management models. The following model pa-
rameters are adopted. For piecewise linear delay cost function, each UAV will be assigned a unit delay cost (ri in model formulation) 
randomly picked from a uniform distribution in range (0,0.3$/min] (Liu et al., 2019) to capture different urgency of UAV missions, 
when delay is less than five minutes. If delay exceeds five minutes, the unit delay cost will double (Ri). Though we do not directly 
consider inbound and outbound UAV deliveries separately, where half missions are with package and half are empty UAVs, the 
variability in ri captures this as well as other factors. The unit horizontal path cost for each UAV is set to $0.2/km based on UAV 

Fig. 6. Clustering results of San Francisco virtual buildings with 100 clusters and 100 times rescaling on virtual building height. Clusters are colored 
by elevation in meters 
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operational cost including equipment and software cost, labor cost, maintenance cost, and electricity cost (Sudbury and Hutchinson, 
2016; Stolaroff et al, 2018). 

We first consider a set of smaller-scale problems with 200 missions, for which the FO method is tractable. These problems enable us 
to compare the BO model results with the true optimum. Recall that for each UAV mission, both the optimal path and the second-best 
path at different altitudes, are generated as two alternative paths. Therefore, spatial conflict detection is performed pairwise on a total 

Fig. 7. Shortest horizontal obstacle-free path results by Saturated FM2 of one OD example  
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of 400 UAV paths. In total, 4371 spatial conflicts are detected. For each spatial conflict path pair, travel time of each flight from its 
origin to the entry and exit points of the conflict region is computed, with 10-second safety buffer added. In other words, there must be 
at least 10 s between when one UAV departs the conflict region and the other enters it. 

The scheduled departure time of the 200 UAV flights is randomly assigned within a time period. To simulate different traffic in-
tensities, we consider different lengths of the time periods, of 60, 30, 15, and 5 min. To make sensible comparison between different 
period lengths, each flight’s scheduled departure time changes proportionately with the period length. To illustrate, if the scheduled 

Fig. 8. Distribution of optimal altitudes for 1000 flights  

Fig. 9. Cost difference at different altitudes  

Table 8 
Comparison results of four traffic management models    

Length of simulation period (min)   

60 30 15 5 

Congestion cost ($) FO 0.2 0.5 0.6 1.0  
BO 0.3 0.5 0.9 1.7  
SDR 0.4 1.6 3.6 4.2  
SD 5.8 15.6 19.7 20.6 

% of congestion cost reduced from SD FO 96.9% 96.8% 97.0% 95.1%  
BO 94.5% 96.5% 95.5% 91.5%  
SDR 93.7% 89.4% 81.9% 79.6% 

% of delay reduced from SD FO 93% 97% 92% 95%  
BO 91% 96% 97% 93%  
SDR 94% 87% 78% 87% 

# delayed flights FO 5 11 14 22  
BO 6 11 12 22  
SDR 6 12 18 19  
SD 18 28 31 57 

# flights taking second-best path FO 8 18 21 37  
BO 11 23 28 42  
SDR 11 19 20 43  
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departure time of a UAV flight is at time 0:30 h for the total time period of one hour (60 min), then the same flight’s scheduled de-
parture time would be at 0:15 h if the total time period changes to half an hour (30 min). Note that the cases with time periods shorter 
than average UAV travel time (12 min for simulated UAV missions) are not realistic, since they represent “pulses” of high demand with 
no demand earlier or later. These cases are still considered so that the performance of the four models can be compared under con-
gested conditions. Aside from the time period length, the same UAV flight schedules are used for the four traffic management models. 
When performing the BO model, we consider the sum of degree centrality within a cluster as the basis for determining priority order of 
clustered flight groups. Our experiments reveal that this metric yields a lower system cost than the other two alternatives (average 
scheduled departure time of a cluster, and cost increase of a cluster) mentioned in Section 3.2.5. 

Table 8 shows the results. The congestion cost is calculated as the system cost by four proposed UTM models minus the ideal system 
cost, which is the system cost if all UAV flights taking their optimal paths without departure delay ignoring conflicts. The congestion 
cost reveals the additional cost of addressing conflicts by both departure delay and rerouting. As expected, the FO model yields the 
smallest congestion cost, which includes ground delay and use of second-best paths, while the SD model yields the largest. Also as 
expected, the congestion cost increases as the simulation period becomes shorter. Congestion cost is greatly reduced when the SDR 
model is employed, and further reduced when the optimization models are used. Comparing the latter, we find, as expected, that the 

Fig. 10. Cumulative diagrams of UAVs assigned departure time from four models in 30- and 5-min cases  
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FO model yields slightly lower congestion cost than the BO model. The difference is small however, indicating that the latter is an 
acceptable alternative in light of its substantially lower computational burden. The percentages of congestion cost saving of the three 
models, which are calculated as the difference of the congestion cost with respect to the SD model divided by the congestion cost of SD 
model, are also presented. The FO model and the BO model have congestion cost savings of above 90% in all four lengths of the 
simulation periods. In contrast, due to its limited ability to take account of flight-specific cost information when resolving conflicts, the 
percentage of congestion cost savings for the SDR model diminishes as the simulation period becomes shorter. Overall, the comparison 
results suggest that while the BO model yields a slightly suboptimal solution, the cost penalty is modest. We will therefore focus on the 
BO model when we consider the 1000 flights case below. 

The cumulative diagrams of the assigned UAV departure time for simulation period lengths of 30 and 5 min are presented in Fig. 10. 
In the 30-min case, the cumulative plots of four traffic management models are very close. However, the difference amplifies in the 5- 
min case as UAV traffic density increases. In the SDR model, the UAV traffic is saturated in the 5-min case: some flights are substantially 
delayed departing beyond the end of the 5-min period, as evidenced by the long ‘tail’ with some flights delayed by more than 10 min. A 
deeper look into the trajectories reveals that flights with large delay on the ‘tail’ are mostly sharing long path corridors with other 
flights. We will further explain the ‘tail’ in the next subsection. 

Fig. 11 shows the relationship between the amount of delay and the unit delay cost (ri in Eq. (1)) across the 200 flights in the case of 
15-min time period for three models. For the FO model (plotted in green), very little delay is assigned to UAV flights unless they have 
very low delay cost. The SDR model results do not exhibit the same trend. For the BO model, though some delays are assigned to flights 
with moderate unit delay cost, no large delay is assigned to flights with high unit delay cost. 

Table 9 shows the average runtime of the four models over five runs, each run with a different group of 200 UAV flights, for 
simulation periods of 60 min, 30 min, 15 min, and 5 min. We used a laptop with Intel i7-8750H CPU, 6 cores (2.2 GHz) and 16 GB RAM. 
The average runtime of the BO, SDR, and SD models remains rather constant for different simulation period lengths, but not the FO 
model. The runtime of SDR model is much higher than SD model because not only SDR model has twice amount of flight paths but also 
it computes best schedules for both possible paths correspondingly before determining the path. Though the average runtime of the FO 
model for a 5-min simulation period is similar to that of SDR model, the FO model runtime is expected to increase dramatically as UAV 
traffic becomes denser. Our experiments show that the computation time of the FO model takes more than 10 hours for the case with 
1000 flights in a 30-minute period. The drastic increase in computation time of the FO model as opposed to the more stable 

Fig. 11. Relationship between assigned delay and flight unit delay cost with 200 flights in 15 min  

Table 9 
Average model runtime (in seconds) over five runs, each with 200 flights  

Average runtime Length of simulation period (min) 

60 30 15 5 

FO  3.7  5.1  7.4  22.1 
BO  4.9  5.1  5.3  5.9 
SDR  20.6  20.3  20.1  21.0 
SD  4.2  4.2  4.3  4.4  
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computation time of the BO model motivates us to focus on the latter for large-scale numerical analysis, as presented below. The BO 
model is thus a good heuristic for solving large-scale problems for which the FO model is computationally intractable. 

4.5. BO model results with 1000 flights 

Given the promise of the BO model in generating good quality results with a reasonable amount of solution time, this subsection 
focuses on using the BO model for tackling larger-size problems. For the case of package delivery, we consider 1000 flights for a period 
of 30 min. In December 2019, around 100,000 packages are delivered in San Francisco daily (Lim, 2019). Assuming a 10-hour delivery 
window, this amounts 5000 packages delivered every 30 min. Thus, considering 1,000 flights corresponds to up to 20% of packages 
delivered by UAV. We use the same method as in subsection 4.2 to generate UAV flight ODs and scheduled departure times for 1000 
flights as inputs for the BO model. 90,959 spatial conflict pairs are detected over the 2000 paths (recall each flight has two alternative 
paths). 

For solving the BO model with 1000 flights, we first find that one flight is not spatially conflict with any of the remaining 999 
flights. This flight is assigned its scheduled departure time and optimal path. The spatial conflict network is based on the remaining 999 
flights. The spatial conflict network that is needed for solving the BO model thus has 999 nodes. Corresponding to the 90,959 spatial 
conflicts identified, 71,315 edges are constructed for the network. The number of edges is less than the number of spatial conflicts 
because two flights, each of which as two paths, can have multiple spatial conflicts. We use the sum of travel time through conflict 
regions between any two flights as the edge weight. 

Next, the Louvain method is applied to detect communities in the spatial conflict network. The 999 flight nodes are clustered into 9 
communities. Modularity is the degree to which a system’s components may be separated and recombined, with a value between 0 and 
1. The modularity of our network is 0.48. A community partition of a real-world network is generally good if modularity is between 0.3 
and 0.7 (Yin et al, 2015). 

With the clustering of flights, the BO model is then applied. As a reference for comparison, we also apply the SDR model and the SD 
model. Results in Table 10 show that the BO model generates schedules with significantly lower congestion cost. Compared to the SDR 
model and the SD model, the BO model assigns less delay to flights on average. Though fewer UAV flights take optimal paths using the 
BO model, the total cost is smaller than the other two models. 

The cumulative diagrams of the 1000 UAV flights based on the SD, SDR, and BO models are shown in Fig. 12. We observe that the 
diagrams of the BO and the SDR models are much closer to the plot of the scheduled departure time than the SD model. The BO model 

Table 10 
Scheduling results of 1000 UAV flights with 30-min simulation period  

Model Congestion cost /$ Delay reduction from baseline % # flights delayed # alternative paths 

BO 29 92% 243 353 
SDR 77 85% 262 283 
SD 811 0% 443 n/a  

Fig. 12. Cumulative diagram of 1000 flights departing in 30 min by SD, SDR and BO models  
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performs better than the SDR model, which is better than the SD model. Given the long ‘tail’, UAV traffic is saturated under the SD 
model. Many flights are delayed departing after the end of the 30-minute period, which is indicated by the vertical green dashed line. 
Fig. 13 visualizes delayed flights at the altitude of 172 m. In the figure, all flight paths assigned to this altitude under the SD model are 
plotted. Paths colored in red are flights on the ‘tail’ after the green dashed line, while all other flights are colored green. UAV flights 
that are assigned large delay by the SD model tend to share a long corridor with several other flights. Those flights need to wait longer 
time to avoid conflicts with multiple other flights passing through longer conflict regions. In contrast, the BO model and SDR model 
have much shorter ‘tails’ as shown in Fig. 12. 

4.6. Payment analysis under mechanism design 

Under the assumption that a VCG mechanism is in place, the resulting payment for each of the 1000 UAV flights is calculated for a 
30-minute period. Again, the BO model as an approximation for system cost minimization is used. Fig. 14 shows the payment dis-
tribution of 1000 UAV flights. We find that about half of the flights have zero or very small payments. Fewer flights have higher 
payments. Flights with higher payments have larger influence on the delay of other flights in the system. Fig. 15 uses different colors to 
denote the payment of 1000 flights along with their paths assigned by the BO model at seven altitudes: 264, 215, 172, 139, 108, 77 and 
46 m, which have 35, 114, 136, 243, 299, 128, 45 UAV flights respectively. No flight is scheduled to altitudes at 542, 310 and 12 m. 
Conceptually, a flight with more conflicts tend to impose more “externalities” on other flights, thereby incurring more payment. In line 
with the expectation, altitudes with fewer UAV flights (e.g. 46 and 264 m) tend to have lower payment ranges. At the altitude of 77 m, 
three flight paths on the left part of the graph do not conflict with any other flight at this altitude and have very low payment. However, 
the payment is non-zero as some other flights may be assigned their second-best paths to avoid conflict with these paths. At the altitude 
of 108 m, some flights have paths conflict with multiple other flight paths resulting in relatively high payments. The numbers of UAV 
flight paths are almost doubled at altitude 108 and 139 m compared to 77, 172 and 215 m, which also contribute to higher payments. 

Fig. 13. UAV flight paths at altitude 172 m with flights on the ‘tail’ colored by red  

Fig. 14. Payment distribution of 1000 UAV flights  
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5. Conclusions 

This research proposes a framework of UAS Traffic Management (UTM) including clustering-based UAV path planning, systematic 
UTM models with conflict resolution, and mechanism design for airspace resource allocation. The UAV path planning algorithm takes 

Fig. 15. Visualization of 1000 UAV paths colored by payments from BO model results  
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advantage of clustering obstacles to generate representative altitude candidates, which is more efficient than the evenly spaced al-
titudes assumed in most research of UAV system planning and analysis. In determining the optimal travel path, the tradeoff between 
horizontal shortest path length and vertical travel distance at different altitudes is recognized. In addition, four traffic management 
models are proposed to systematically assigns schedules to UAV flights with conflict resolution. These traffic management models 
allocate spatial and temporal airspace resource to each UAV mission, while determining the departure time and which path to take for 
each UAV flight. We find that the Batch Optimization (BO) model, which can solve large-scale systems in short time while making a 
slight compromise on solution optimality, is more attractive than the Full Optimization (FO) and Sequential Delay/ Reroute (SDR) 
models to solve large-size problems. Finally, as traffic management requires private information from UAV operators, it is important 
that the private information received is truthful. To this end, a VCG-style mechanism is adapted, in which the payment made by an 
UAV flight is the “externalities” caused by the flight to the rest of the system. We find that the payment made by a UAV flight increases 
with traffic intensity and the extent of interactions a flight has with other flights. 

This paper presents a beginning of integrating UTM with UAV delivery that deals with allocating spatial–temporal airspace re-
sources to UAV missions. Multiple directions can be further explored in future research. Here we suggest a few. First, in this paper we 
propose the Batch Optimization (BO) model as an approximation of the Full Optimization (FO) model. Further research could be 
directed to investigating other heuristic approaches to solve the Full Optimization (FO) model, and compare the solution quality and 
computation efficiency. Second, stochastic factors could be introduced, for example, by accounting for uncertainties in weather and 
UAV performance (obstacle detection, flying stability, etc.) while determining the optimal and second-optimal paths of each UAV 
mission. Third, the performance of different models could be tested in more areas with varying population density, tall building 
concentration, and terrain types, especially given the particular landscape and topology of San Francisco. Doing so will help glean 
more generic insights about UTM. Lastly, as last-mile urban delivery is shifting toward nonmotorized vehicles and drones, it would be 
interesting to look into traffic management in a multimodal context involving UAVs and ground modes to enhance the overall effi-
ciency of the delivery system while meeting demand. 
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Duchoň, F., Babinec, A., Kajan, M., Beňo, P., Florek, M., Fico, T., Jurǐsica, L., 2014. Path planning with modified a star algorithm for a mobile robot. Procedia Eng. 96, 

59–69. 
Fadhil, D.N., 2018. A GIS-Based Analysis for Selecting Ground Infrastructure Locations for Urban Air Mobility. Technical University of Munich, Munich, Germany. 

Master’s thesis.  
Ferrandez, S., Harbison, T., Weber, T., Sturges, R., Rich, R., 2016. Optimization of a truck-drone in tandem delivery network using K-means and genetic algorithm. 

J. Ind. Eng. Manage. JIEM 2016–9 (2), 374–388. 
Foina, A.G., Krainer, C., Sengupta, R., 2015. An unmanned aerial traffic management solution for cities using an air parcel model. Proc. Int. Conf. Unmanned Aircraft 

Syst. (ICUAS) 1295–1300. 
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