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Abstract— Airport congestion and delay are subject to many 

sources of uncertainty including daily variations of airport 

capacity and demand. Taking advantage of interconnections 

among airports serving the same metropolitan region help 

alleviate airport congestion by utilizing excess resources in other 

airports. This study proposes to shift flights between airports in 

the same Multiple Airport Region (MAR) to improve regional 

operational performance. We consider such flight shifting at 

strategic level. If one airport is consistently congested and another 

has excess capacity, flights can be reassigned to less congested 

airport to reduce delay. We identify US MARs based on temporal 

distance between airports, and characterize spatial-temporal 

patterns of airport capacity variation within MAR. Then the 

stochastic flight shift model is formulated as a Mixed Integer 

Linear Programming (MILP) model to optimize the average total 

delay and reassignment cost of the flight schedule in the MAR 

among all possible capacity scenarios. Since the stochastic flight 

shift model is computationally expensive with high flight traffic 

intensity, we solve the model in decomposed flight batches. The 

proposed methodology is applied to New York MAR. Results show 

that by reassigning flight landing airport and time, the flight delay 

in the New York MAR could be significantly reduced. 

Keywords- flight diversion, Multiple Airport Region (MAR), 

capacity scenarios, scenario-based stochastic programming, flight 

rescheduling, multimodal scheduling  

I. INTRODUCTION 

Shortages of airport capacity and traffic demand growth are two 

major causes of flight delay. Most of flight delay takes place in 

major metropolitan areas. Metropolitan areas with high demand 

are often served by a system of two or more airports whose 

arrival and departure operations are highly interdependent. 

Though there has been considerable research to address flight 

arrival delay problem, they focus on scheduling improvements 

at a single airport to reduce delay [1, 2, 3]. This motivates us to 

leverage the interconnections among different airports in the 

same metropolitan region. We refer to such a region as a 

Multiple Airport Region (MAR) [1]. 

Airports in the same MAR may face different capacity-demand 

imbalance situations. It may therefore be possible to take 

advantage of excess capacities of some airports to reduce the 

overall airport delay of the MAR. In this research, we 

investigate the opportunities for reducing delay through 

adjustments in the schedule that may involve reassigning 

arrival airports within MAR region.  

The flight reassignment was commonly applied in tactical 

level, especially in disruption management and recovery 

problem. There are many existing research working on the 

problem consists in constructing aircraft routes and passenger 

itineraries for the recovery period that allow the resumption of 

regular operations and minimize operating costs and impacts on 

passengers [4, 5, 6]. This research explores the potential 

benefits of implementing flight reassignment in operational 

traffic management. Many practical challenges may arise 

including aircraft type compatibility of reassigned airports, 

feasibility of passengers with connecting flights, aircrafts and 

crews dispatch, airline equity problem, etc. Our previous work 

[7] investigated the tactical implementation of such flight 

reassignment. The cost of same-day reassignment of flights and 

passengers is large, perhaps prohibitively so. In this paper, we 

focus on flight reassignment from a long-term perspective. The 

arrival airport reassignment may be incorporated in the flight 

schedule, several months or more in advance. In long-term 

perspective, airlines have more time to plan the aircraft 

rotations, crew schedules, multi-leg passenger routings, and so 

on. The cost of transporting passengers by ground mode and 

feasibility problem with their connecting flight are eliminated, 

as the flight reassignment happens before passengers purchase 

tickets. However, some flexibility is lost by restricting the 

reassignment to a fixed airport in the strategic level, which 

could be addressed by integrating strategic flight reassignment 

in advance with a same-day tactical reassignment. 

To explore these possibilities and benefits, we first need to 

rigorously define MARs and characterize spatial-temporal 
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patterns of airport capacity variation within them. Then, 

specifically, we propose to shift flights from a congested airport 

to land at another airport in the same MAR in order to utilize 

the capacity of the MAR airports more efficiently. Especially 

when a flight is experiencing a significant delay or causing 

significant delay to later flights, shifting it to a different airport 

may ameliorate the problem significantly. As the flight demand 

increases, flight shifting between airports can be expected to 

yield increasing delay reduction benefits, enough to offset the 

substantial cost of shifting a flight to land at a different airport.  

Such flight reassignment efficiently schedules flights under 

different possible airport capacity scenarios. The capacity 

scenarios are not determined when the flight schedules are 

revised several months before operation day at strategic level. 

Therefore, we consider stochastic flight reassignment with 

alternative MAR capacity scenarios and their associated 

probabilities. There are considerable existing literatures on 

flight scheduling for delay optimization with demand and 

capacity uncertainties [3, 8, 9], but these studies have rarely 

considered capacity uncertainties in MARs.  

In this study, we propose to reassign flights across airports in 

the same MAR to reduce delay. This idea of multimodal 

scheduling involves flight diversion and using ground 

transportation to accommodate shifted passengers. Since the re-

assignment cost is large and uncertain, we solve the models for 

a large range assumed re-assignment costs, and find significant 

gains from flight shifting even when these costs are assumed to 

be very high. 

II. LITERATURE REVIEW 

Multimodal strategies are widely used in disruption 

management to reduce airport delay considering alternative 

modes or airports. [10] proposed to use inter-airport ground 

transport to enable diversion of flights to alternate hubs in 

regional airport system, when the system encounters a severe 

airside capacity reduction. Airlines could transport passengers 

and crew members between original scheduled and diverted 

airports by incorporating ground transport modes into their 

disruption management. Multimodal collaboration approach 

was developed in [11] to reroute passengers and help the 

recovery process using the case study of Asiana Crash at San 

Francisco International Airport. Predeparture algorithms was 

developed in [12] to reroute aircrafts, reassign passengers, and 

change flight schedules in response to disruptions. [13] 

investigated the relationship between the choice of diversion 

airport and the characteristics of an intended destination airport 

and the individual flights. In disruption management, airlines 

have contingency plans to divert flights enroute to an airport 

that experiences a full or partial outage. There are plenty of 

existing research working on how to efficiently make diversion 

decision to save substantial diversion cost [14, 15, 16].  

Flight diversion could also be applied in strategic flight 

reassignment and scheduling among multiple airports to reduce 

delay by taking advantage of excess resources. Limited 

research has been working on stochastic flight reassignment in 

MAR for the purpose of reducing delay in regular flight 

operations other than disruptions. Such flight diversion and 

scheduling are investigated under varying airport capacities.  

Airport capacities are subject to substantial variability as they 

depend on weather conditions, selected runway configurations, 

accidents and other uncertainties. Capacity scenario analysis 

identifies the patterns of airport capacity variation and has been 

used widely for air traffic management and airport planning 

[17]. [18] presented the methodologies of generating capacity 

scenario trees for a single airport from empirical data, and 

examined the performance of scenario-based single airport 

ground holding models using scenario trees. Research [19] 

investigated the real-world applicability of scenario-based 

approaches to the single airport stochastic ground holding 

problem. In the model of research [20], capacity uncertainty has 

been addressed by considering a set of scenarios, each 

corresponding to a time-varying airport capacity profile. [21] 

presented a model to determine the optimal strategies for 

utilization of airport capacity in accordance with the dynamics 

of traffic demands and weather. Existing studies have focused 

on capacity analysis of single airport. In this study, we extend 

clustering analysis to analyze capacity scenarios of multiple 

airports in the same MARs. 

Over the past decades, research has led to the advancement of 

flight delay control under capacity uncertainties. Most existing 

models leverage stochastic optimization methods, which use 

probabilistic representation of airport capacity and how it 

evolves over time-of-day. [8] proposed an algorithm that 

assigns departure delays to flights scheduled to arrive at San 

Francisco International Airport in the presence of airport 

capacity uncertainty. A multi-stage (dynamic) stochastic 

optimization model is proposed for assigning ground delays 

and revising them in response to updated forecasts [3]. [9] 

designs and evaluates a GDP framework that simultaneously 

allocates arrival and departure delays, and explicitly accounts 

for uncertainty in capacity forecasts. This paper extends the 

individual airport capacity uncertainty to multiple airports, and 

leverages the capacity interdependence of airports in the same 

MAR. 
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III. PROBLEM STATEMENT 

Airports in a MAR are relatively close to one another, raising 

the possibility that flights may be shifted between MAR 

airports in order to alleviate demand capacity imbalances. 

Figure 1 shows an example of a flight scheduled to travel from 

DCA to JFK is shifted to land at LGA, when the arrival delay 

in JFK is tremendous. We consider such shifting at a strategic 

level in this paper. If future traffic projections suggest that one 

airport will be consistently congested while another has excess 

capacity, flight schedules might be adjusted to shift the demand 

into the less congested facility. Such flight shifting cannot be 

exercised easily since the costs of shifting are substantial. 

However, it is at least conceivable that when there are 

substantial differences in congestion at different airports, such 

reallocation would be appropriate. 

Strategically, the original flight schedule can be modified and 

improved by such flight shifting and rescheduling roughly six 

months in advance. In this case, the MAR capacity is not 

known, but capacity scenarios probabilities are available. We 

propose a scenario-based stochastic flight shift model in MAR 

to reassign flight landing airport and time to improve regional 

system operations. 

IV. METHODOLOGY 

We first identify US MARs and characterize spatial-temporal 

patterns of airport capacity variation within them. The 

clustering analysis yields a few representative capacity 

scenarios, each of which specifies capacity time series over a 

day for all airports in MAR. We then formulate the stochastic 

flight shift model as a Mixed Integer Linear Programming 

(MILP) model to optimize the average total delay and re-

assignment cost of the flight schedule in the MAR among all 

possible capacity scenarios. Since the computation time is 

expensive for solving the stochastic model with high traffic 

intensity, we propose to solve the MILP in flight batches. This 

model focuses on the system efficiency view, and is solved with 

a large range of assumed flight shifting costs. We find 

significant gains from flight shifting even when these costs are 

assumed to be very high. We take New York MAR as our case 

study.  

A. US MARs Identification and Capacity Scenarios 

Clustering 

We lay the groundwork for stochastic flight shifting model by 

generating US MARs and clustering MAR capacity scenarios 

from previous work [7]. US MARs are identified following the 

algorithm in [22] with 1.5-hour threshold of temporal distance 

between airports. Annual Passenger Boarding data from FAA 

Air Carrier Activity Information System (ACAIS) database is 

used for MARs generation algorithm. We also use Google 

Maps Distance Matrix API to query travel time between airport 

pairs. Figure 2 shows the New York MAR generated from the 

algorithm. 

Then, we generate typical MAR daily capacity scenarios by 

performing clustering analysis on capacity variation trend of 

airports in the same MAR. By analyzing the combined capacity 

scenarios, we take into account the interdependence in airport 

capacities that may result from correlated weather, traffic 

interactions, and other factors. Quarter-hour Airport Arrival 

Rate (AAR) from the FAA ASPM data base is used for capacity 

scenario clustering analysis. Specifically, we applied K-means 

clustering analysis to study MAR capacity profiles. Both elbow 

method and silhouette analysis are performed to identify the 

optimal number of clusters. Taking New York MAR as 

example, we judged that 11 clusters is the point beyond which 

 

Figure 1.  New York MAR 

 

 

Figure 2.  Flight Shifting Example 
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increases in explained variance begin to diminish significantly. 

We thus use 11 clusters in our subsequent analysis.  

Figure 3 presents the clustering results of the three example (out 

of 11 total) capacity profiles in New York MAR of the year 

2015. Each capacity profile centroid plot in the first row 

represents a daily capacity scenario of New York MAR in 2015, 

while the plots in the second row show the original capacity 

data. The centroid capacity profiles are the mean of individual 

capacity variation for the days included in the cluster. The 

number and percentage on the bottom left of each plot represent 

the number and percentage of the days belonging to the cluster. 

First column shows the scenario in which capacities of all the 

airports in New York MAR are relatively stable through the day 

but with JFK at a higher capacity. The scenario in the second 

column represents the situation that the capacity of JFK airport 

is at the low level in the early morning and then increases at 

noon. The third scenario is a bad day for most airports in the 

MAR with much lower capacity, but also with low possibility 

of occurrence.

 

B. Stochastic Flight Shifting Approach 

Our stochastic flight shift approach leverages the 

interdependence of airports in the same MAR. It efficiently 

assigns flights with large delay to airports with excess 

resources. If daily airport capacity profile is given, one may 

find the optimal solution by using the deterministic flight shift 

model in [7]. At strategic level, only the probability of MAR 

daily capacity profile is available. The stochastic flight shift 

model is formulated as a Mixed Integer Linear Programming 

(MILP) model. The model provides with a rescheduling 

solution of which airport in the same MAR a flight is shifted to. 

Table 1 presents the definition of sets, variables and parameters 

in our model. 

The model is formulated as follows: 

 

Min      ∑ 𝑃𝑞 ∙ (𝐼𝑓,𝑏,𝑡,𝑞𝑓,𝑏,𝑡,𝑞 ∙ (𝑡 − 𝑆𝑓) + 𝑙𝑓,𝑏 ∙ 𝐼𝑓,𝑏,𝑡,𝑞) 

  s.t.    

𝐼𝑓,𝑏,𝑡,𝑞 ∙ 𝑡 ≥ 𝑆𝑓 ∙ 𝐼𝑓,𝑏,𝑡,𝑞      ∀ 𝑓 𝑖𝑛 𝐹, 𝑡 𝑖𝑛 𝑇, 𝑏 𝑖𝑛 𝐴, 𝑞 𝑖𝑛 𝑄      (1) 

∑ 𝐼𝑓,𝑏,𝑡,𝑞𝑓 ≤ 𝐶𝑏,𝑡,𝑞             ∀ 𝑡 𝑖𝑛 𝑇, 𝑏 𝑖𝑛 𝐴, 𝑞 𝑖𝑛 𝑄                  (2) 

∑ 𝐼𝑓,𝑏,𝑡,𝑞𝑏𝑡 = 1                  ∀ 𝑓 𝑖𝑛 𝐹, 𝑞 𝑖𝑛 𝑄                             (3)    

∑ 𝐼𝑓,𝑏,𝑡,1𝑡 = ∑ 𝐼𝑓,𝑏,𝑡,2𝑡 = ⋯ = ∑ 𝐼𝑓,𝑏,𝑡,11𝑡     ∀ 𝑓 𝑖𝑛 𝐹, 𝑏 𝑖𝑛 𝐴    (4) 

 

   

   

Figure 3.  New York MAR Capacity Profiles Examples 
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The objective function calculates the expected total daily cost 

of flight delay and shifting across all MAR capacity scenarios. 

The flight shifting cost 𝑙𝑓,𝑏 is composed of a shifting fixed cost 

and ground travel time from new landing airport to the original 

one. The ground travel time between airports in MAR is queried 

from Google Maps Distance Matrix API. In addition, we 

assume a wide range of flight shift penalties, since the value of 

this penalty is uncertain, and in order to determine the range of 

penalty levels under which flight shifting would be beneficial. 

Constraint (1) requires that the reassigned arrival time at shifted 

airport under each capacity scenario cannot be earlier than the 

scheduled arrival time; Constraint (2) restricts the number of 

arrival flights landing in each time slot at each airport under 

each capacity scenario from exceeding the airport capacity; 

Constraint (3) specifies that each flight under each capacity 

scenario is assigned to one and only one airport and time period. 

Constraint (4) is a coupling constraint incorporated in the 

stochastic model [21]. It maintains that the reassigned landing 

airport of a flight stays the same under each capacity scenario, 

but the reassigned arrival time can be different. In long-term 

prospective of flight reassignment, the shifted landing airports 

will be determined in advance, but the reassigned arrival time, 

which includes arrival delay, is flexible.   

TABLE I.  DEFINITION OF SETS, VARIABLES AND PARAMETERS 

Set Definition 

𝐹  
Set of scheduled flights 

𝑇 Set of quarter-hour time intervals 

𝐴 Set of airports in the MAR 

𝑄 Set of daily MAR capcacity senarios 

Decision 

Variable 
Definition 

𝐼𝑓,𝑏,𝑡,𝑞 Binary decision variable equal to 1 if flight 𝑓 is assigned 

to land at airport 𝑏 at time 𝑡 under scenario 𝑞 

Parameters Definition 

𝐶𝑏,𝑡,𝑞 Capacity of airport 𝑏 at time 𝑡 under scenario 𝑞 

𝑆𝑓 Scehduled landing time of flight 𝑓 

𝑃𝑞 Probability of scenario 𝑞 happening in 2015 

𝑙𝑓,𝑏 The cost of shifting flight 𝑓 from its scheduled landing 

airport to airport 𝑏. The shifting cost is composed of a 

fixed cost plus ground travel time from new landing 

airport to original landing airport.  

 

C. Flight-batch Optimzation Solution 

The stochastic flight shift model is computationally expensive 

with high flight traffic intensity in large-size MAR. The 

computation time increases dramatically with larger number of 

flights, airports in MAR, time slots and capacity scenarios. This 

motivates the approach of solving the stochastic optimization 

model in decomposed flight groups. Figure 4 presents the 

workflow of solving flight-batch optimization problem. We 

divide the flights in order of scheduled landing time to batches 

with the same size. Then, the stochastic optimization model is 

solved in individual batch iteratively. For each batch, we add 

an extended period to the capacity to accommodate flights 

delayed beyond the batch time period. The length of extended 

period is determined by the maximum flight delay without 

flight shifting across all capacity scenarios. In other words, the 

extended time period is calculated by maximizing assigned 

flight delay from results of solving the following model 

individually under each of 11 capacity scenarios with shift cost 

infinitely large.  

 

Min      ∑ (𝐼𝑓,𝑏,𝑡𝑓,𝑏,𝑡 ∙ (𝑡 − 𝑆𝑓) + 𝑙𝑓,𝑏
∞ ∙ 𝐼𝑓,𝑏,𝑡) 

  s.t.    

𝐼𝑓,𝑏,𝑡 ∙ 𝑡 ≥ 𝑆𝑓 ∙ 𝐼𝑓,𝑏,𝑡                ∀ 𝑓 𝑖𝑛 𝐹, 𝑡 𝑖𝑛 𝑇, 𝑏 𝑖𝑛 𝐴             (5) 

∑ 𝐼𝑓,𝑏,𝑡𝑓 ≤ 𝐶𝑏,𝑡                       ∀ 𝑡 𝑖𝑛 𝑇, 𝑏 𝑖𝑛 𝐴                         (6) 

∑ 𝐼𝑓,𝑏,𝑡𝑏𝑡 = 1                          ∀ 𝑓 𝑖𝑛 𝐹                                   (7)    

 

Figure 4.  Batch Optimization Steps 
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If any flight is delayed to the extended period at the current 

batch, the airport capacity in the next batch at the same time 

slot will be subtracted with number of delayed flights. 

V. EXPERIMENTS ANALYSIS 

We apply the stochastic flight shift model to New York MAR 

and solve the model with 11 capacity profiles of five airports. 

To select a representative flight schedule, we sort the daily 

enplanements of JFK airport of the year 2015 in descending 

order and choose the 10th busiest day (July 2nd) as inputs for 

our model. For that day, there are 1985 flights scheduled to land 

at New York MAR airports. To evaluate the benefit of flight 

shifting in high traffic intensity, we applied the model to 20% 

and 50% increased demand level. We also consider a set of 

flight shift fixed costs ranging from 0.5 to 27 hours, as well as 

a baseline case in which flight shifting is prohibited (i.e. 𝑙𝑓,𝑏 =

∞ if flight is shifted to a different airport). 

Flight shifting results are presented in Figure 5 with flight shift 

fixed cost ranging from 3 to 18 hours at 20% increased demand 

level. No flight shifting occurs with flight shift fixed cost 

greater than or equal to 21 hours. In general, LGA and JFK are 

major sources of shifted flights, while all airports used as sinks. 

There are fewer shifted flights with higher shift fixed cost (note 

that these plots have different vertical scales). Though JFK 

airport is the busiest among five airports, it also has higher 

capacity in most cases. Therefore some flights in other airports 

are shifted to JFK when there is insufficient arrival capacity at 

these airports.  

   

14.5% 8.6% 4.3% 

   
3% 2.4% 0.7% 

Figure 5.  Flight Shifting Results of 20% Increased Demand with Different Shift Fixed costs 
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Figure 6 shows the average savings from flight shifting across 

all scenarios (see dashed lines) and the scenario-specific 

savings (see solid lines) obtained from the stochastic model. 

With 4-hour or greater flight shift cost, there’s no flight shifting 

at 2015 demand level. The model saves more cost under worse 

scenario cases. The less favorable capacity scenarios (capacity 

scenario 4, 8, 10 and 11) have larger scenario-based cost 

savings (solid lines) than average stochastic cost savings 

(dashed lines). Those low-capacity scenarios also have low 

probability, and most other scenarios have cost savings lower 

than the average savings.   

Figures 7 shows the amount of total delay under the 11 capacity 

scenarios with different flight shift fixed costs at 2015 demand 

level. The total delay includes the amount of delay of all flights 

no matter shifted or not, but not including the flight shift cost. 

Flight shifting would largely eliminate delay if the shifting cost 

is 1 hr or less. Increases in shifting costs above 2 hrs result in 

more delay as shifting becomes more cost prohibitive. 

Scenarios 10 and 11 are extreme cases with low capacity in all 

airports. The probability of these two scenarios is low, but delay 

is much higher than other scenarios.  

Percentages of shifted flights with various flight shift fixed cost 

are presented in Figure 8. Since no flight shifting occurs at 2015 

baseline demand when shift fixed cost is greater than 3 hours, 

only results at 20% and 50% increased demand levels are 

plotted. Larger proportion of flights are shifted with higher 

demand level or lower flight shift fixed costs. The stochastic 

model stops assigning flight shifting when flight shift fixed cost 

is greater than or equal to 21 hours at 20% increased demand 

level, and 27 hours at 50%. This demonstrates that there are still 

flights shifted even when shift cost is very large. It can be 

expected that the penalty for shifting flights in the original 

schedule is substantially less than that for shifting flights “on 

the fly” once the conditions of the day are known. The results 

reveal the potential benefit of applying flight shifting in regular 

flight operations. 

VI. CONCLUSIONS 

This work proposes a stochastic flight shift model within MAR 

considering uncertainty of MAR capacity variation profiles. It 

aims to utilize the excess capacities in MARs to mitigate airport 

congestion and reduce flight delays. In the results, we found 

that shifting flights among airports in New York MAR, 

especially for low-capacity scenarios, can reduce the system 

delay significantly. The determination of flight shifting is 

dependent on the cost of shifting, including passenger transfer, 

aircraft dispatching, airport changing fee, connection to next 

 

Figure 6.  Total Cost Savings by Flight Shifting at 2015 Demand 

 

 

Figure 7.  Total Delay of Each Scenario 

 

Figure 8.  Percentage of Flight Shifting  
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flight, etc. Even with large flight shift fixed cost, e.g. 18 hours 

at 20% increased demand level, there are still some flights 

shifted among airports to reduce the systemwide flight delay 

cost. The flight shift models bring more benefits at higher 

demand levels. It will be a useful tool for MARs with growing 

demand and restrictions of expanding airport capacities in the 

future. 

One future research direction is to apply the capacity analysis 

and flight shift model at other MARs and understand the 

nationwide potential benefits of flight shifting. New York 

MAR is taken as the case study in our study given its well-

known important role in NAS. Same analysis could be applied 

to other identified MARs as well. Another direction is to 

explore the way of determining the flight shift fixed cost. It 

requires comprehensive datasets, and the result could vary from 

one MAR to another. Limitations of aircraft type compatibility 

in reassigned airport should also be considered by adding 

related constraints in the model. In addition, we may integrate 

the strategic model in the current work with the tactical model 

in our previous study to improve the system efficiency while 

maintaining the flight shifting flexibility. Lastly, we may 

incorporate airline equity considerations into the flight shift 

model. Flight slot allocation has been studied to balance system 

efficiency and equity [23], as well as exchanging flight arrival 

slots between airlines[24]. Similarly, we could impose an upper 

limit of the flight shifting for each airline, or construct an 

inequality penalty term and add that in the objective function. 

These are important issues, but the results of our current 

research suggest that the potential benefits of strategic flight 

shifting are significant enough to warrant a more detailed 

analysis that addresses them. 
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