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We formulate and implement a new metric for identifying multiple airport regions (MARs)
around the world, based on the temporal distance between airports. This metric, opposed
to existing studies based on spatial distance, takes into account the real travel time
between airports of latent passengers and their journeys via ground transportation. We
investigate a variety of properties of the newly built MARs network at the global scale
for the year 2015, including the importance of MARs in global air transportation, similarity
clustering, destination overlap, and airport roles inside a MAR. Commonalities and differ-
ences to the simplified spatial distance are identified.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Global air transportation faces tremendous demands and challenges (Balakrishnan et al., 2016; Cook et al., 2015; Wandelt
and Sun, 2015). Meeting these high demands is critical, since current air transportation already suffers from significant con-
gestion and delays (Belkoura et al., 2016), as well as hard criticisms on its negative environmental impacts (Wolfe et al.,
2014), especially noise and emission in the vicinity of airports (Forsyth, 2007). Capacity at many airports is limited relative
to current or projected passenger demands (Fernandes and Pacheco, 2002). Recent studies have increasingly used complex
network techniques (Cook et al., 2015) to understand the processes of delay generation (Belkoura et al., 2016), delay prop-
agation (Zanin, 2015), loss-of-separation (Zanin, 2014), and resilience (Sun et al., 2017). In such studies, analyzing the roles
and functions of a single airport often provides a limited view on the real geography of air transport in general, especially in
metropolitan areas where more than one airport serve the passengers with increasing long-distance mobility demand in a
region (O’Connor and Fuellhart, 2016). Therefore, it is believed that the concept of Multiple Airport Regions (MARs) is an
effective starting point for air transport research. The concept of MARs has emerged in the 1990s: It was defined as a group
of two or more major commercial airports in a metropolitan region (de Neufville, 1986), and typically a major commercial
airport was defined as an airport with at least two million passengers per annum.

One of the biggest challenges is to implement the operational interactions between airports in a MAR (Bonnefoy, 2008).
Several researchers have addressed aspects of this problem, such as manage traffic allocation problems in a MAR (Hansen
and Du, 1993) and the prioritization of arrival and departure routes in the terminal maneuvering areas of a MAR
(Sidiropoulos et al., 2015). The MARs in existing large-scale studies often were defined by a spatial distance metric to esti-
mate the airport catchment area, ranging from 50 km to 250 km: Airports within a fixed radius are aggregated as a MAR,
u (A. Li).
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starting with airports that have the highest numbers of passengers (O’Connor and Fuellhart, 2016; de Neufville, 1986;
Bonnefoy, 2008; Hansen and Du, 1993; Sidiropoulos et al., 2015). However, there is an obvious caveat when using a spatial
distance metric to define a MAR: Using the spatial distance assumes a homogeneous travel time from an airport to all con-
centric points at a given distance threshold. This view neglects the real infrastructure available for transportation and it is
unlikely to capture the preferences and travel behaviors of passengers with a spatial distance based MARs (O’Connor and
Fuellhart, 2016; Wittman, 2014). The reason for this simplification of distance is rather intriguing: When analyzing a
large-scale network, it is difficult to obtain infrastructure data and service data for all regions. In fact, collecting infrastruc-
ture data for a single airport is often time consuming (Yang et al., 2016).

In this study we define the accessibility of an airport within a region based on a newmetric: Temporal distance. This met-
ric estimates how long it takes to travel between two airports, using either road network (by driving cars or taking taxis) or
public transport (bus, lightrail, railway, subway, and tram). Our routing algorithms for finding travel itineraries between air-
ports are based on the freely available data provided by OpenStreetMap (OSM), which has become an impressive source of
worldwide public transportation and road network data, at a very high level of coverage (Neis and Zielstra, 2014). To com-
pare the differences between spatial and temporal distance, we report the results of an initial experiment first. Fig. 1 presents
the scatter plot between spatial distances using the haversine formula and temporal distances with our methodology for
selected airport pairs. The haversine formula calculates great-circle distances between two points on a sphere from their lon-
gitudes and latitudes; while our methodology calculates the minimum travel time between two points by using either road
network or public transport. Results are only shown for airport pairs with spatial distances less than 400 km and with tem-
poral distances less than 4 h. Moreover, on the right-hand side of Fig. 1 we show a histogram of the travel speed between
airports. There is no functional dependency and limited correlation between spatial distance and travel time between air-
ports, which means that no fixed spatial distance can cover the real connectivity between different airports correctly. This
is the major motivation for our study, analyzing the worldwide MAR network by using the temporal distance as a metric.

This paper is organized as follows. Section 2 provides the literature review on the state-of-the-art MARs analysis. Section 3
presents our methodology to construct MARs based on temporal distances, traveling either with road network or public
transport. In Section 4, we present the results of worldwide temporal MARs. Finally, conclusions are drawn in Section 5.
2. Literature review

This section provides the literature review on the state-of-the-art analysis on MARs. Several researchers have studied
MARs since the 1990s. A MAR was originally defined as a group of two or more major commercial airports in a metropolitan
region (de Neufville, 1986). An inter-airport distance threshold of 50 km has been used for the definition of a MAR (Hansen
and Weidner, 1995), a second criterion is that the Herfindahl concentration index for the airports in the region, which mea-
sures the degree to which passenger activity is concentrated is less than 0.95. The effects of improvements to airport ground
access by non-automobile modes in a MAR were analyzed, with a case study of an extension of a Bay Area Rapid Transit rail
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Fig. 1. Left: Scatter plot between spatial distances using Haversine formula and temporal distances with our methodology for selected airport pairs. Each
circle represents one airport pair; circles shown in green colors are the airport pairs with direct flight connections, the blue dashed line represents the
convex hull, the red diagonal line shows the travel time when the travel speed is 60 km/h. Right: Frequency distribution of travel speeds between airport
pairs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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link into the San Francisco International Airport (Monteiro and Hansen, 1996). Results showed that the improvements to air-
port ground access would modestly strengthen the dominant position of the airport. Hansen and Du (1993) proposed a
model of traffic allocation in a MAR, with an application to the San Francisco Bay Area. The empirical study on the opera-
tional efficiencies of 44 major U.S. airports showed that the characteristics of MARs may not strongly affect airport opera-
tional efficiency (Sarkis, 2000). The capacity and pricing choice of two congestible airports in a MAR have been studied in
Noruzoliaee et al. (2015), analytical models with three privatization scenarios have been developed: Public–private duopoly,
private–private duopoly, and private monopoly.

Sidiropoulos et al. proposed a framework for the prioritization of arrival and departure routes in the terminal maneuver-
ing areas of MAR, with the London MAR (Heathrow Airport-LHR, Gatwick Airport-LGW, London City Airport-LCY, Stansted
Airport-STN, and London Luton Airport-LTN) as a case study (Sidiropoulos et al., 2015). Nayak estimated the interaction
between flight delay at one single airport and delay at the rest of national airspace system; factors affecting delays in nine
MAR in the U.S. have been studied as well (Nayak, 2012).

Bonnefoy performed an in-depth multiple-case study analysis of 59 MARs in the world and developed a feedback
model to capture the evolution dynamics of MARs (Bonnefoy, 2008; Bonnefoy et al., 2010). The roles of airports were cat-
egorized into primary and secondary airports: A primary airport was defined as serving more than 20% of the total pas-
senger traffic in the MAR; while a secondary airport was defined as serving between 1% and 20% of the total passenger
traffic. It was found that the evolution of MARs can be attributed to (1) the construction of new airports; (2) the emer-
gence of secondary airports. The MARs in Asia-Pacific region belong to the former case; while the MARs in the U.S. and
Europe belong to the latter case. The computation of MAR was based on traditionally used physical distance: All airports
within 120 miles (around 193 km) of the city center were considered as MARs. Several restrictions were implemented in
a follow-up filtering process: Airports serving less than 500,000 passengers per year and primary airports with less than
two million passengers (in the year 2005) were not considered; Archipelago type airport systems resulting from the pres-
ence of islands or water areas were discarded as well. These strict filtering processes resulted in a rather small set of air-
ports (451) and accordingly only 59 MARs worldwide. In this case, the analysis of MAR is incomplete and the roles of
individual airports in the MAR might change when more airport candidates are considered. With the emergence and
growth of low-cost carriers, the roles of small secondary airports are becoming more important, since low-cost carriers
have been exploiting cheaper operations at underutilized secondary airports. Furthermore, large/hub airports have been
suffering from heavy congestion and delay problems for a long time, diverting flights to secondary airports in the vicinity
might help to mitigate these problems.

An initial step towards overcoming the limitation of a fixed spatial distance is presented in Wittman (2014). The defini-
tion of an airport catchment is based on U.S. Census Bureau primary statistical areas: Airports within an administrative
boundary are defined as belonging to the same MAR. It was found that most U.S. regions lost access to air service during
the study period (2007–2012). However, this definition of airport catchment has still several limitations. First, it was
assumed that residents inside a region have the same accessibility to all airports. This is not true in reality, since different
transportation options in a region provide different degrees of accessibility to the airports. Nowadays, passengers care more
about door-to-door traveling, the degree of convenience to access one airport mainly decides which airport a passenger
would select in a MAR. Second, it was assumed that residents in the periphery of a region are not allowed to travel to a
nearby region with better accessibility. This is not the case in reality as well, since it was shown that passengers are willing
to travel long distances to access an airport with low fares or attractive schedules (Suzuki et al., 2004), which often involves
crossing administrative boundaries of states or regions.

Other related studies focus less on the network, and more on other aspects of MARs. Wu and Caves (2002) developed a
model to simulate the aircraft rotation in a multi-airport environment. Schedule and punctuality data from an European air-
line was used as a case study. With a simulation experiment for the Des Moines International Airport in central Iowa (Suzuki
et al., 2004) showed that most airlines have under-estimated the airport-leakage tendencies of travelers in single-airport
regions and the revenues could be increased by reducing the airfares.
3. Methodology: a new perspective on MARs based on temporal distances

This section explains our methodology in detail. In several existing studies, MARs are identified based on a spatial
distance metric to define the airport catchment area (between 50 km and 250 km). All airports within a fixed radius
are aggregated into a MAR, starting with airports that have the highest numbers of passengers, see O’Connor and
Fuellhart (2016), de Neufville (1986), Bonnefoy (2008), Hansen and Du (1993), and Sidiropoulos et al. (2015) for exam-
ples. However, this perspective neglects the real transportation infrastructure, and thus, does not capture the true time
and cost of accessing airports (O’Connor and Fuellhart, 2016; Wittman, 2014). The reason for this simplification is the
difficulty when looking at a large-scale network, of obtaining transport infrastructure data for all regions. In our study,
we use the freely available dataset OpenStreetMap for the estimation of temporal distances. Section 3.1 describes how
the temporal distance between any two airports worldwide is estimated. Based on the new temporal distance measure,
we develop a methodology for extracting the worldwide MARs with air transportation data for the year 2015 in
Section 3.2.
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3.1. Temporal distance estimation with OpenStreetMap

In this subsection we describe the methodology and data used for estimating temporal distances. The goal is to extract the
temporal distance between two airports for two transportation modes: road and public transit. In general, the travel time
between two points can be queried by using publicly available routing services, such as, Google Maps or Baidu Maps. How-
ever, using these services has a few limitations, which are discussed below.

1. Automatically querying of routes between points is often forbidden or limited to a given number of queries per day. Since
we have more than one million airport pairs in our study, this is not an option.

2. The coverage of different regions for these routing services is largely heterogeneous. While the public transit information
for U.S. is very accurate, Google does not provide (reliable) public transit routing for many rural areas in specific countries.

3. Our own experiments showed that the routes (and time estimations) among different providers significantly differ, so
combining results from different websites is not an option either (see Table 1).

Therefore, we created our own temporal distance estimates. In order to support worldwide routing, we build upon the
freely available data provided by OpenStreetMap (OSM, URL http://planet.osm.org/). Started in 2004, OSM is a community
project built by volunteer mappers, with the goal to create a free editable map of the world. Technically, it belongs to the
area of crowd-sourcing, referring to how large groups of users can perform functions that are either difficult to automate
or expensive to implement; OSM is one of the leading examples of such an effort (Haklay and Weber, 2008). While the
information included in OSM can be incomplete, the amount of coverage in populated areas is very high (Neis and
Zielstra, 2014). During the last 12 years, OSM data has become an accurate representation of the world, thanks to the
development of cheap, yet accurate GPS devices and the spread of mobile phones. As part of the OSM effort, transportation
modes throughout the world are being modeled, including stations and physical layout of streets/lines (Wandelt et al.,
2016).

OSM describes map data using three graphical concepts: (1) nodes, (2) ways, and (3) relations. Nodes encode points on a
map, for instance, way points, points of interest, stations, or crossing points of streets. The second concept, ways, are used to
connect nodes into segments, which can be used for encoding rail/road infrastructure. The third concept, relations, combine
nodes and ways into a collections of more complex objects. Examples for relations are urban transportation service lines or
an important area of interest. In addition, one of the key concepts in OSM is the ability to tag all three types of conceptual
elements with key-value pairs (so-called tag dictionaries). This annotation mechanism is used to describe names, speed lim-
its, infrastructure properties, and others. We use the data collected by OSM to estimate the temporal distance between two
points on earth as described below. It should be noted that our travel time estimation does not take into account actual traf-
fic/schedule information, but estimates a lower-bound on the fastest travel time between two airports. While future work
could take into account additional realistic traffic conditions, implementing this on a global scale is a very challenging task,
as outlined in our discussion in the beginning of this subsection.
3.1.1. Estimating the temporal distance by road network
The project Open Source Routing Machine (OSRM) (Luxen and Vetter, 2011) has developed scalable techniques and

implementations for routing vehicles with different speed profiles at continental scale based on Openstreetmap data. It is
released as a small standalone server application (see URL http://project-osrm.org/). The major advantage of using OSRM
is that we can directly exploit road-specific maximum speed information, which varies significantly among regions through-
out the world. Therefore, the travel time estimation is usually very accurate. OSRM performs shortest path calculation based
on contraction hierarchies, which allows queries at a planet scale. The server can be queried by providing an API with lat-
itude/longitude of starting and end points. The result of a query is the route together with distance and driving time. We
extracted the driving time for each airport pair in the network, by querying for the fastest driving connection between
the latitude/longitude pairs of the given airports. The result is an estimation of the minimum free-flow time between the
two points, without any information about road blocks, congestion, or other conditions.
Table 1
Travel time by road network or public transport between one airport pair: Tianjian Binhai International Airport (TSN) and Beijing Capital International Airport
(PEK). Different search engines generate different results. Website assessed at 9 am on 17th August 2016. Note that the travel time might change slightly with
different departure time of the day. In addition, construction projects, traffic, weather, or other events may cause conditions to differ from the map results as
well.

Search engines Distance (km) Travel by car/taxi Travel by public transport

Baidu maps 146.5 2 h Approx. 3 h (subway line 2/3 + train + subway line 4/2 + airport shuttle)
Bing maps 149.4 1 h 36 min 8 h 29 min (airport shuttle + subway line 2 + bus + airport shuttle)
Google maps 154 1 h 53 min 4 h 8 min (subway line 2 + train + subway line 4/2 + airport shuttle)

http://planet.osm.org/
http://project-osrm.org/


88 X. Sun et al. / Transportation Research Part E 101 (2017) 84–98
Algorithm 1. Creating MARs based on temporal distances.
Input: Number of passengers per airport a in 2015 passðaÞ, temporal distance
threshold d
Output: MARs assignment assignment

1: Let airports be the airports in pass sorted descendingly by the number of
passengers

2: Let assignment ¼ £
3: Let seen ¼ £
4: for a1 2 airports do
5: Add a1 to seen
6: for a2 2 airports do
7: Let dcar be the temporal distance for taking a private car between a1

and a2
8: Let dpublic be the temporal distance for taking public transport

between a1 and a2
9: if a2 R assignment and a2 R seen and minðdcar; dpublicÞ 6 dthen
10: assignmentða2Þ ¼ a1
11: Add a2 to seen
12: end if
13: end for
14: end for
15: return: assignment
3.1.2. Estimating the temporal distance by public transport
The estimation of a public transit distance is more challenging. First, we extracted several worldwide network layers from

OSM: Subway, Lightrail, Railway, Bus, and Tram. The obtained geo-spatial network (with distance information between way-
points) was converted into a temporal network for estimating driving times along public transport routes. Here, we exploited
the fact that most infrastructure elements in OSM are annotated with their maximum speed values. If the value was not pre-
sent, we used the following default values: Subway = 50 km/h, Lightrail = 60 km/h, Railway = 100 km/h, Bus = 30 km/h, and
Tram = 40 km/h. Next, we converted the infrastructure network (which describes waypoints between stations) into a logical
network, by aggregating paths between stations; ending up with only the shortest temporal path. Finally, we created tran-
sition links between all five network layers as follows: If two stations are within 3 km distance, we connect themwith a tran-
sition link at a walking speed of 3 km/h. The obtained multi-layer network is queried for shortest paths with
latitude/longitude of starting and end points. For the computation of travel time, we add the following information about
stop times: For subway, lightrail, tram, and bus we assume that a stop at a station takes 30 s, while a stop on a railway takes
2 min. When changing the travel modes, we add another penalty of 15 min. We extracted the traveling time for each airport
pair in the network, by querying for the fastest connection between the latitude/longitude pairs of the airports.

In Fig. 2, we visualize the fastest connection on the road network and by public transit for the airport pair TXL (Berlin-
Tegel Airport) and SXF (Berlin Schoenefeld Airport). The temporal distance between the two airports is the minimum travel
time, which is traveling on the road network in this case.
3.2. MARs generation

We create the MARs for the year 2015, based on the flight leg data from the Sabre Airport Data Intelligence (ADI, http://
www.airdi.net). The leg is stored by months and contains the following information: Source/destination airports and the
number of passengers who used that flight leg in one month. We sort the airports according to the total number of passen-
gers in the year 2015 (inbound + outbound passengers). We iterate over all airports in the descending order of passengers
and query the temporal distance to all other airports. Once the distance to the larger airport is below a threshold, we assign
that airport as belonging to the MARs of the larger airport. In addition, we mark the airport as being assigned and do not try
to reassign it in the future. The algorithm is formalized in Algorithm 1. After execution of the algorithm, variable assignment
contains a mapping from airports to their main airport in the MAR.

The process of deriving MARs with Algorithm 1 is visualized in Fig. 3 with 31 domestic airports in Germany as a running
example. The ranking of airports by number of scheduled departures in 2015 is as follows: FRA, MUC, TXL, DUS, HAM, STR,
CGN, HAJ, NUE, SXF, BRE, DRS, LEJ, FMO, HHN, FKB, DTM, NRN, SCN, FDH, PAD, RLG, ERF, GWT, LBC, MHG, BGN, HDF, KSF, ZCD,
and BWE. We start with all these airports depicted in Fig. 3(a). The highest ranked airport is FRA. Two airports can be reached
from FRA within 1.5 h temporal distance: MHG (around 40 min) and HHN (slightly more than one hour). Both airports are
recorded in variable assignment as belonging to the MAR center FRA and added to the set seen of visited airports (Fig. 3(b)).

http://www.airdi.net
http://www.airdi.net


a) By road network: Following the three major inner-city highways
(A111, A100, and A113, highlighted in blue) makes the connection
from TXL to SXF by car or taxi very efficient. The total travel time is
around 30 minutes, more than twice as fast as public transit.

b) By public transport: From TXL to S Beusselstrasse with airport
shuttle bus TXL (gray), then switch to the Berliner S-Bahn (red, ligh-
trail) for three consecutive trips with S8, S41, and S42. Total trans-
portation time: Around 1 hour and 5 minutes.

Fig. 2. Visualization of different transportation modes from TXL (Berlin-Tegel Airport) to SXF (Berlin Schoenefeld Airport). Both transportation modes take
significantly different routes and require very different travel times: Less than 30 min (a) vs. more than one hour (b).
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Next, we process the second-highest ranked airport MUC: Fig. 3(c). Since no airports are reachable within 1.5 h, we proceed
with TXL. SXF can be reached from TXL within around 30 min in the best case. Therefore, we group SXF together with TXL:
Fig. 3(d). The process is executed until all airports are assigned.
4. Results: temporal-distance MARs in global air transportation

In this section, we perform an analysis of global MARs based on temporal distance, and compare the results against those
obtained by using spatial distance. Our analysis is based on a set of 3148 airports, for which we have air passenger traffic
data (provided by Sabre ADI) and spatial information (collected online). Opposed to related studies, we did not apply any
filters on these airports.

The majority of experiments in this section is based on the temporal distance of 1.5 h and a spatial distance of 90 km, as
identified in Fig. 1. Section 4.1 discusses general properties of the MARs network and investigates the largest MARs in the
world. We lay a particular focus on reporting similarities and dissimilarities between spatial and temporal clusterings. In
Section 4.2, we further analyze the most frequent distribution of airport types in MARs, distinguishing primary, secondary,
and tertiary airports. Finally, in Section 4.3 we consider the mix of destinations from airports in a MAR.
4.1. Network properties of global MARs based on temporal distances

Fig. 4 (top) shows an overview on global MARs for the year 2015 with a temporal threshold of 1.5 h, i.e., an airport only
belongs to a MAR, if it is within 1.5 h of driving/public transport to the main airport in the MAR. The size of a MAR is the
number of its component airports. The visualization in Fig. 4 (bottom), with a spatial threshold of 90 km, makes it possible
to compare the largest MARs identified by both aggregation strategies. First of all, it can be seen that the spatial distance
aggregates more airports into MARs, leading to larger MARs: While for the temporal distance of 1.5 h only four MARs with
more than 6 airports exist (LHR, BRU, JFK, BOS), using the spatial aggregation leads to nine MARs with more than six airports
inside. Most notably, using the spatial distance, we obtain several large MARs in Alaska (e.g., OOK, BET, EMK) which are not
identified as such based on temporal distance. The reason is that these airports are not well connected to each other (except
from using flight connections) and thus should not be clustered as MARs. Similarly, in other regions, we find that the spatial
distance often identifies many small island airports as MARs (e.g., BOB, HDR, and OGG), while these islands are only con-
nected by flights. We can also find similar inaccessible regions on the land. We conclude that, when applied at a global scale,



a) Airports before aggregation b) FRA (with HHN and MHG) c) MUC (without others)

d) TXL (with SXF) e) DUS (with five airports) f) HAM (with BRE and LBC)

g) STR (with FKB) h) HAJ (with BWE) i) Final aggregation: HDF (withoutothers)

Fig. 3. Visualization of Algorithm 1 for the domestic airport network of Germany. The current main airport (bold and rectangular border) and all airports
that can be reached within 1.5 h are highlighted in yellow color. Processed airports are highlighted in blue, while open airports are indicated with white
color. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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use of temporal distance yields a substantially different and more realistic set of MARs. Table 2 show the number of MARs in
each continent, grouped by the size of the MAR, i.e., the number of airports. Fig. 5 presents the top six largest MARs.

Our construction of temporal MARs depends on the threshold of temporal distances between airport pairs. It is interesting
to check how the size of MARs would change when the thresholds change. Fig. 6 (a) shows the sensitivity analysis for the top
six temporal MARs with different temporal thresholds, ranging from 0 to 2.5 h. The transportation options could be road net-
work or public transport (railways, subways, light rails, tram, and buses). A general trend is that with the expansion of the
temporal distance threshold, the sizes of MARs increase gradually. Note that there are two exceptions: When the temporal
threshold reaches around 1.6 h, the size of temporal MAR for Brussels Airport (BRU, shown in blue dashed line) decreases
suddenly, because the airport is absorbed into Amsterdam Airport Schiphol (AMS). It is not surprising that more airports
are merged into the MARs as the threshold increases, however, some airport members of a MAR could also be absorbed
by nearby MARs, whose hub airports have higher passenger traffic. Fig. 6 (b) shows the sensitivity analysis for the top six
spatial MARs with different distance thresholds, ranging from 0 to 150 km.

Air transportation networks are often analyzed regarding the complex network properties (Shang et al., 2015; Sun and
Wandelt, 2014). Fig. 7 visualizes the scatter plot of three centrality measures (degree centrality, betweenness centrality, and
closeness centrality) for temporal distance against spatial distance. AMAR is plotted on the diagonal line, if its centrality value
is identical for temporal and spatial distance,with a speed of 60 km/h.Wefind that the centralitymeasures are rather similar in
both types of MARs aggregations. So the effect on the network structure, from a topological point of view, is not significant.

Fig. 8(a) shows the frequency distribution of temporal distances for the top six largest MARs, traveling from each non-hub
to the hub airport. As indicated by the red median lines, most hub airports can be reached within 0.5–1.5 h in the MARs. The
temporal distances vary significantly from one MAR to another, for instance, the median temporal distance for BRU (Brussels



Temporaldistance( ≤ 1.5hours)

Spatialdistance( ≤ 90km)

Fig. 4. An overview on global MARs based on temporal distance proposed in our study (1.5 h, top) and traditional spatial distance (90 km, bottom). MARs
with 3–4 airports are visualized with blue color, 5–6 airports with green color, and more than 6 airports with yellow color. It can be seen that with the
spatial distance, more and larger regions are identified as MARs compared to using temporal distance. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Table 2
MARs size distribution: Temporal distance (1.5 h). The number of MARs by number of airports and continent of the MAR is shown.

Continent/ Nr. of airports in MAR 1 2 3 4 5 6 7 8 9 10 11 12 SUM

Africa 297 13 1 0 0 0 0 0 0 0 0 0 311
Asia 677 49 5 3 0 0 0 0 0 0 0 0 734
Europe 319 59 20 6 1 0 0 1 0 0 1 0 407
North America 630 99 20 8 2 1 0 1 0 0 0 0 761
Oceania 200 23 3 0 0 0 0 0 0 0 0 0 226
South America 211 22 2 1 0 0 0 0 0 0 0 0 236
SUM 2334 265 51 18 3 1 0 2 0 0 1 0 2675
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Airport) is almost twice as high as for LAX (Los Angeles International Airport). Fig. 8(b) presents the frequency distribution of
spatial distances for the top six largest MARs. The red median lines show that most hub airports are 50–80 km away from the
non-hub airports.
4.2. Clustering of MARs according to primary/secondary configuration

In a MAR, we categorize the component airports into three classes: Primary airports (serving more than two million pas-
sengers in the year 2015), secondary airports (with at least 100,000 passengers but less than two million passengers), and



Temporal distance (≤ 1.5hours) Spatial distance (≤ 90km)

1. LHR, 11 airports 2. BRU, 8 airports 1. BET, 12 airports 2. LHR, 9 airports

3. JFK, 8 airports 4. BOS, 6 airports 3. JFK, 8 airports 4. BOS, 7 airports

5. SFO, 5 airports 6. LAX, 5 airports 5. OOK, 7 airports 6. SJU, 6 airports

Fig. 5. The top six largest MARs ranked by the number of component airports for the temporal distance (left) and spatial distance (right).
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Fig. 6. Sensitivity analysis for the top six MARs based on temporal distances (a) and spatial distances (b). Different thresholds are shown: The maximum
travel time is 2.5 h, using either road network or public transport; while the maximum spatial distance is 150 km. It can be observed that with the
expansion of the distance thresholds, the sizes of spatial MARs increase much faster than temporal MARs, without considering how two airports can be
connected in reality. This clearly indicates that the temporal distance proposed in our research is more realistic and appropriate for studying multiple
airport markets.

92 X. Sun et al. / Transportation Research Part E 101 (2017) 84–98
tertiary airports (with less than 100,000 passengers). Note that the threshold of two million passengers for primary airports
is consistent with (Bonnefoy, 2008). We are interested in how similar the airport classes are in different MARs across world
regions. The following two steps are performed: (1) For each MAR, we compute the percentage of each airport class. (2) With
the percentages of airport classes as the input data, we cluster the MARs with similar composition of airport classes using k-
means algorithm.



0.0 0.1 0.2 0.3 0.4

0.
0

0.
1

0.
2

0.
3

0.
4

Degree centrality (Temporal distance)

D
eg

re
e 

ce
nt

ra
lit

y 
(S

pa
tia

l d
is

ta
nc

e)

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Betweenness centrality (Temporal distance)

B
et

w
ee

nn
es

s 
ce

nt
ra

lit
y 

(S
pa

tia
l d

is
ta

nc
e)

0.25 0.35 0.45 0.55

0.
25

0.
35

0.
45

0.
55

Closeness centrality (Temporal distance)

C
lo

se
ne

ss
 c

en
tra

lit
y 

(S
pa

tia
l d

is
ta

nc
e)

Fig. 7. Scatter plot of three centrality measures: Degree centrality (left), betweenness centrality (middle), and closeness centrality (right), with temporal
distance against spatial distance for global MARs. A MAR is plotted on the diagonal line, if its centrality value is identical for temporal and spatial distance,
with a speed of 60 km/h. It can be seen that the centrality measures are strongly correlated in both types of MARs aggregations, if the speed is chosen
appropriately.

Fig. 8. Frequency distribution of temporal distances (left) and spatial distances (right) for the top six largest MARs, traveling from each component airport
to the hub airports. Red lines represent the median distances. It can be seen that the temporal distance varies significantly from one MAR to another. For
BRU (Brussels Airport) the median temporal distance is more than twice as high as for LAX (Los Angeles International Airport). In the top six largest MARs
with spatial distances, most hub airports are 50–80 km away from the component airports. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

X. Sun et al. / Transportation Research Part E 101 (2017) 84–98 93
Fig. 9 presents the clustering results for global MARs based on temporal distance (left) and spatial distance (right). For
each cluster, we show the distributions of airport types with box plots, with outliers plotted as individual points. The flat
shapes of the majority of the box plots indicate low intra-cluster variability. Among 341 MARs based on temporal distances,
approx. 25% belong to Cluster 1, which has very few primary airports and roughly equal shares of secondary and tertiary
airports; 18% of the MARs have equal share of primary and tertiary airports (Cluster 2); and 16% of the MARs are mainly com-



Fig. 9. Clustering of MARs worldwide using k-means algorithm, with default value of the input parameter k ¼ 8 for temporal distance of 1.5 h (a) and for
spatial distance of 90 km (b). For each cluster, the distributions of airport types with box plots are shown. Below each sub-figure, top 24 MARs serving the
largest numbers of passengers in the year 2015 are listed as well.

94 X. Sun et al. / Transportation Research Part E 101 (2017) 84–98
posed of primary and secondary airports (Cluster 3). It is interesting that most MARs based on spatial distance have similar
clustering patterns.

Note that k-means algorithm uses the Euclidean distance and variance for clustering; the results might change with dif-
ferent input parameters of k. In this research, we use the default value of k ¼ 8 when performing the clusters of MARs. We
also clustered the MARs using DBscan, and obtained similar sizes of clusters (8–10).
4.3. Analysis of destination overlap inside MARs

In order to explore the dynamic dimensions of the complex mix of destinations served from each airport in a MAR
(O’Connor and Fuellhart, 2016), we compute three measures: (1) Jaccard index between all destinations of all airports in
a MAR. (2) Sum-of-pairs based on multiple sequence alignment in bioinformatics. (3) Coverage of destinations for hub air-
ports and non-hub airports separately in a MAR.
4.3.1. Jaccard index for all airports in a MAR
First, we computed the Jaccard index between all destinations of all airports. The Jaccard index is a statistical measure for

the diversity of sample sets, defined as the fraction of the size of the intersection and the size of the union of the sample sets.
Formally, given a set of airports a1; . . . ; an in a MAR, and let destðaiÞ denote the set of destinations of airport ai, the Jaccard

coefficient is the result of
j
T

16i6n
destðaiÞj

j
S

16i6n
destðaiÞj

, i.e., the number of shared destination served by all airports divided by the total number

of destinations. This measure yielded an overlap of zero for many MARs in our dataset; see Fig. 10(a). The reason is that it is
rare that even a single destination is served by all airports in a MAR, and thus, the numerator is frequently zero. Therefore, it
is difficult to distinguish, whether the Jaccard index is not applicable in our case, or whether the overlap between destina-
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Fig. 10. Frequency distribution of destination overlap between airports in all temporal MARs, according to Jaccard index (left) and sum-of-pairs (right). The
gray curve visualizes the cumulative frequency distribution. Many MARs have the Jaccard index of zero, while most MARs have a rather small sum-of-pairs:
Around 90% of all MARs have an estimation of less than 0.46, while the majority has values less than 33%.
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tions is really so small. Essentially, one should keep in mind that the Jaccard index is often used for the case of two input sets
only.

4.3.2. Sum-of-pairs for all airports in a MAR
In this study, we build on the sum-of-pairs score as follows. First, we compute the set of all destinations of MARs. Second,

for each destination d and each pair of airports ða1; a2Þ in the MARs, we compute whether a1 and a2 serve destination d. If yes,
we increment a counter (initialized to 0) by 1. Finally, we normalize the counter by dividing it through the number of des-
tinations, as well as, the total number of airport pairs, n�ðn�1Þ

2 for n airports in the MARs. The resulting value is an estimation
for the overlap of the destination.

We show the results of this overlap measure on a small toy example with three airports a1; . . . ; a3 and seven destinations
d1; . . . ; d7. The assignment of airports to destinations is as follows.
destða1Þ ¼ ½d1;d3;d4;d5;d7�
destða2Þ ¼ ½d5;d6�
destða3Þ ¼ ½d1;d2;d3;d4;d6�
When we compute the similarity between the destinations of airport a1, airport a2 and airport a3, we have a set of destina-
tions ½d1; d2; d3; d4; d5; d6; d7�. Destination d1, is served by airport pair ða1; a3Þ, but neither by ða1; a2Þ nor ða2; a3Þ. Thus, for des-
tination d1, the counter is increased to 1. Destination d2 is only served by a3 and thus none of the three possible airport pairs
contributed to the counter, which remains at 1. Following the same procedure, we add one to the counter for d3, d4, d5, and
d6. Thus, the counter is 4, and the normalized value of the counter is 4

3�7 � 20%. Note that the generalized Jaccard index in this
case would simply yield 0, since none of the destinations is served by all three airports.

The frequency distribution of this metric across all MARs is shown in Fig. 10. It can be seen that most MARs in our dataset
have a rather small overlap: Around 90% of all MARs have an estimation of less than 0.46, while the majority has values less
than 33%. The few MARs with very high overlap estimations usually belong to small MARs, where all airports in the MAR are
connected to the same hub airport, but have no other connections. One interesting case is the MAR for Lanzarote and
Fuerteventura (airports: ACE and FUE): This MAR has an estimated overlap of 68%. Further analysis of these two airports
reveals that both of them are connected mainly to overlapping connections in Western Europe.

4.3.3. Coverage of destinations for hub airports and non-hub airports separately in a MAR
The previous two destination overlap indexes, the Jaccard index and sum-of-pairs, do not distinguish hub airports and

non-hub airports in a MAR. It would interesting to check how the destination overlap would change, depending on the roles
of airports. Fig. 11 compares the coverage of destinations for hub airports and non-hub airports in MARs which have at least
two airports. In our study of the 341 MARs: 20% of the hub airports can reach all destinations of their MARs; 70% of the hub
airports can reach 80%; 91% of the hub airports can reach 60%. On the other hand, without hub airports, only 5.5% of the non-
hub airports can reach all destinations of the MARs; 12.8% of the non-hub airports can reach 80%; 29.6% of the non-hub air-
ports can reach 60%. We can conclude that the services provided by the hub airports are rather complete, even without the
presence of non-hub airports in the MARs.

5. Conclusions

This paper addresses the problem of systematically identifying MARs without invoking ambiguous geographic constructs
such those employed in the literature. Such previous studies have defined MARs as, for example, two or more significant air-
ports that serve commercial passenger traffic in a metropolitan region. Such a definition depends on a pre-defined set of
regions and also an objective criterion for whether an airport serves commercial traffic in a region. However, there are var-
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ious ways of delineating metropolitan regions, even for a given country. For example, the US Government defines Urban
Areas, Metropolitan Statistical Areas, Micropolitan Statistical Areas, and New England City and Town Areas. The Regional
Plan Association, and non-governmental organization, has also delineated Megaregions in the US. Even given a definition
of a metropolitan area, existing data do not enable us to define what airports serve this area. There are many occasions in
which residents of a given area may use an airport not located within the confines of that area, but the data do not clearly
show where the true origins or destinations of passengers using a particular airport. In this paper, we propose methods of
identifying MARs that do not depend on arbitrary geographic boundaries or the ambiguous notion of an airport serving an
area. Rather our definitions are based purely on a measure of distance between airports and widely available data on total
airport passenger traffic. Also, since our approach uses data that is available for airports throughout the world, it is able to
define MARs all over the world in a consistent manner. Finally, compared to previous studies that use inter-airport spatial
distance, here we use temporal distance, which is clearly the more appropriate measure.

The key contributions of this research are as follows.

1. We propose a new metric to assess accessibility between any two airports in the world: Temporal distance as induced by
traveling either by road or public transport. Instead of the traditionally used spatial distance metric, we use a newly pro-
posed temporal distance to build a network of global MARs. Our temporal distance estimation is based on the freely avail-
able data from OpenStreetMap and has the capability of worldwide routing.

2. The temporal distance metric is used to derive a MAR network for the year 2015, based on the worldwide air ticket data
from Sabre Airport Data Intelligence. We analyze the distribution of MARs and also the distinguished largest MARs in the
network. We find that the MARs often have significantly different speed profiles for their airports. Clustering the MARs by
sizes of the member airports reveals that the majority of MARs has a rather mixed structure of primary, secondary, and
tertiary airports. Moreover, we report network properties for the MAR network and discuss how far they differ from the
traditional spatial distance approach.

3. We explore the mix of destinations from airports in a MAR. Identifying three measures of overlap (Jaccard index,
alignment-based sum-of-pairs, and coverage separation between hub and non-hub airports), we find that most MARs
have a rather small destination overlap and so that many services provided by these airports are often complementary.
On the other hand, we find that there is a strong dependence of airports in a MAR on their hub airport, which usually has
service most, but not all, of the MAR destinations.

Our results show that the global topological properties on MARs based on temporal and spatial distance are not signifi-
cantly different. This can probably be explained by a large number of MARs with only one (or two) airports inside, which are
often identical regardless of whether temporal and spatial distance is used. Only for MARs with more airports (and more
infrastructure developed between them), we can see the differences clearly. While the categories of the primary/secondary
classification are indeed similar, there are several airports which belong to different classes regarding spatial and temporal
distance. As we can see in the visualization in Fig. 5, the assignments of MARs are different even for non-extreme cases, such
as LHR and BOS. To summarize, the key point of our method is to have a global inventory of MARs based on temporal dis-
tance, together with the conformation that some properties are similar, while others are not, when compared to MARs based
on the rough proxy of spatial distance. The identification of these (dis)similarities is the major contribution of our work.



X. Sun et al. / Transportation Research Part E 101 (2017) 84–98 97
Below, we discuss a few limitations of our approach, which could lead to future work on MARs:

1. Data preparation challenges: Methods based on spatial distance can be easily computed by haversine distance, given lat-
itude/longitude of each airport. Managing hundreds of GB for the worldwide transportation infrastructure required us to
use dedicated hardware, while still taking several days of pure computation. However, traditional methods based on spa-
tial distance always need some post-filtering. We are not aware of any standard method for this step established in the
literature. Mostly, they include (a) cutting of small airports based on passenger thresholds, (b) eliminating airports on
hand-collected islands, and (c) taking into account administrative borders. These filtering steps are essentially necessary
because no (large-scale) infrastructure data is available. In this study, we showed that infrastructure data can be made
available based on Openstreetmap.

2. Reproducability of MARs: Methods based on spatial distance will compute the same MARs independent of the infrastruc-
ture, and are therefore reproducible (as long as the same post-filter steps are performed). Our approach, on the other
hand, will compute different MARs once the infrastructure changes; which is usually rapidly modeled and reflected in
Openstreetmap. We think that this is actually an advantage, since the MARs do change over time, with the establishment
of new ground transportation infrastructure. High-speed rail, for instance, is changing the game completely in China, with
major HSR stations being located directly at airports (e.g. Shanghai). Therefore, we argue that filtering-based methods
also need to be adapted in these cases, if they are supposed to reflect real-world connectivity. With our technique, based
on infrastructure data and reachability computation, we are always reflecting the current state of the world, as repre-
sented in Openstreetmap. Moreover, we believe that, based on infrastructure data, you can even perform realistic simu-
lations of case-studies, for instance, how does a new railway line change the accessibility of airports; something that
cannot be done with spatial techniques.

3. Parameter estimation for temporal distance: Throughout this study, we assume a homogeneous composition of passen-
gers traveling between airports. This assumption is a simplified view, since in reality people living around airports have
different preferences for choosing transportation modes, depending on age, mobility, and travel purpose. Neglecting these
preferences can be understood as estimating a best-case connecting time, where all passengers use the fastest available
connection. For instance, elderly people are known to be less focused on travel time and pay higher attention to comfort.
Thus, once these people travel, a slower connection with public transit might not be acceptable for them. Similarly, people
without a car will have to use public transit, which could shift the MAR regions from the perspective of these passengers.
Future studies could take into account more realistic passenger composition models. The goal of our study can be under-
stood as estimating a best-case connecting time. In order to perform future studies with realistic compositions of passen-
ger groups, several challenges need to be overcome. First, a large quantity of data is required to perform such an analysis
at the worldwide scale. While it might be possible to obtain city-level data for many cases, one actually needs data below
city resolution, in order to accurately estimate population density, population demography, and their induced usage of
transportation modes. The Population Grid mentioned above is a first step in this direction; and future releases are
announced to contain more demographical data. A second challenge comes with the expenses of computational experi-
ments. Assuming a homogeneous passenger group, the worldwide experiments performed in this study required days of
computing power, essentially for determining shortest connection times. Further increasing the complexity of the pas-
senger and travel model will likely render it unfeasible to compute the MAR at a very large scale, given todays hardware.

4. Analysis of accessibility: In our present study, we estimate the distance between two airports by the minimum driving
time, taking into account car and public transit. This approach is more realistic than the state-of-the-art, which usually
makes use of line-by-sight distances at larger scale. With this view, we can answer questions such as how long it takes
(approximately) to travel from one airport to another, in case of disruptions or congestion. However, this is only one pos-
sible view on the function of MARs, which focuses on the replaceability of airports inside networks, i.e., seeking for alter-
native airports in case of disruptions. Other views may focus on the accessibility of MAR airports by actual or latent
passengers. In order to compute an estimation of the actual access time, other publicly available datasets, such as Pop-
ulation Grid http://sedac.ciesin.columbia.edu/data/collection/gpw-vcan be used to (a) identify the population density
inside a MAR and (b) compute the individual access time to airports using the methodology in our study. With such
an approach, it would be possible to accurately estimate the access times and further judge the competition and coop-
eration effects inside a MAR. Computing the access time on a grid-like network with high resolution poses tremendous
challenges on the computing power; especially on a world-wide scale. Nevertheless, we believe that the evaluation of
actual access times to airport is an important step for future work, which can lead to different insights on MAR structures.

Despite these limitations, we think that our work is the first and initial attempt to derive the worldwide MARs based on
infrastructure, and we expect that other researchers pick up on our work and extend it.

Our study contributes towards a better understanding of realistic MARs networks, and eventually leading to the design of
better inter-modal networks (Ghane-Ezabadi and Vergara, 2016; Yang et al., 2016) and increased network resilience (Edrissi
et al., 2015). In the current study, when computing the temporal distances between two airports using public transport, max-
imum speed values for five transportation options have been considered: Bus, lightrail, railway, subway, and tram. Future
work could take into account several other factors as well, such as ticket prices, schedules and levels of comfort with differ-
ent transportation options. Moreover, the concept of MAR facilitates analyzing the resilience of air transport systems: If an
airport in a MAR was disabled, we could check how effectively other airports in the MAR could pick up the slack. Airport

http://sedac.ciesin.columbia.edu/data/collection/gpw-vcan
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substitution in a MAR is a way to mitigate supply demand imbalances; for example, rerouting flights from airports with high
delay to airports with lower delay. Therefore, several related research areas can exploit our temporal distance metric to
obtain more accurate and realistic analysis of air transportation in general.
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